Correl-Net: Defect Segmentation in Old Films Using Correlation Networks
The old film restoration process involves many operations, one of which is the ability to identify defects that altered the film. This operation can be formulated as a binary segmentation problem and solved using state-of-the-art segmentation networks such as DeepLab v3+ or NAS-FPN. While being very...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 259 |
---|---|
container_issue | |
container_start_page | 245 |
container_title | |
container_volume | 13886 |
creator | Renaudeau, Arthur Seng, Travis Carlier, Axel Durou, Jean-Denis |
description | The old film restoration process involves many operations, one of which is the ability to identify defects that altered the film. This operation can be formulated as a binary segmentation problem and solved using state-of-the-art segmentation networks such as DeepLab v3+ or NAS-FPN. While being very powerful at describing the spatial characteristics of defects, these methods fail to take into account the fact that defects are also temporal anomalies. We therefore propose an architecture that builds on the correlation layer introduced in FlowNet to compensate for motion and eliminate potential false positives, features that look like defects but can be tracked over multiple images and are actually part of the scene. We also introduce a self-supervised pre-training process of the network, which precedes a fine-tuning phase to specifically adapt the detector to each film. Results show that our architecture, while being more compact and less resource-consuming than state-of-the-art methods, achieves higher precision and recall. |
doi_str_mv | 10.1007/978-3-031-31438-4_17 |
format | Book Chapter |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04492582v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC7241948_232_260</sourcerecordid><originalsourceid>FETCH-LOGICAL-h2387-c89cc9ca59f3044e3dbc75dc3d7ca5fd591438fcceca3bf93db17e194eb12f603</originalsourceid><addsrcrecordid>eNpVkDtPwzAQx81TFOg3YMjKYLB9bmyzofKUKjpA55PrOG0gTYodQHx7HMLCdNL_cbr7EXLG2QVnTF0apSlQBpwCl6CpRK52yDjJkMRfTe6SEc95SoA0e_88pfbJiAET1CgJh-SYg9IsB8jlERnH-MoYE1qDyc2I3E_bEHxNn3x3ld340rsue_arjW8621Vtk1VNNq-L7K6qNzFbxKpZZUNlsFPvqw1v8ZQclLaOfvw3T8ji7vZl-kBn8_vH6fWMrgVoRZ02zhlnJ6YEJqWHYunUpHBQqCSWxcT0z5XOeWdhWZrkc-W5kX7JRZkzOCHnw961rXEbqo0N39jaCh-uZ9hraasREy0-ecqKIRtTsFn5gMu2fYvIGfaYMTFDwEQNf5FijzmV5FDahvb9w8cOfd9yCUiwtVvbbedDRCVkukqjAIEi3fUDiz16QQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC7241948_232_260</pqid></control><display><type>book_chapter</type><title>Correl-Net: Defect Segmentation in Old Films Using Correlation Networks</title><source>Springer Books</source><creator>Renaudeau, Arthur ; Seng, Travis ; Carlier, Axel ; Durou, Jean-Denis</creator><contributor>Gade, Rikke ; Kämäräinen, Joni-Kristian ; Felsberg, Michael ; Gade, Rikke ; Felsberg, Michael ; Kämäräinen, Joni-Kristian</contributor><creatorcontrib>Renaudeau, Arthur ; Seng, Travis ; Carlier, Axel ; Durou, Jean-Denis ; Gade, Rikke ; Kämäräinen, Joni-Kristian ; Felsberg, Michael ; Gade, Rikke ; Felsberg, Michael ; Kämäräinen, Joni-Kristian</creatorcontrib><description>The old film restoration process involves many operations, one of which is the ability to identify defects that altered the film. This operation can be formulated as a binary segmentation problem and solved using state-of-the-art segmentation networks such as DeepLab v3+ or NAS-FPN. While being very powerful at describing the spatial characteristics of defects, these methods fail to take into account the fact that defects are also temporal anomalies. We therefore propose an architecture that builds on the correlation layer introduced in FlowNet to compensate for motion and eliminate potential false positives, features that look like defects but can be tracked over multiple images and are actually part of the scene. We also introduce a self-supervised pre-training process of the network, which precedes a fine-tuning phase to specifically adapt the detector to each film. Results show that our architecture, while being more compact and less resource-consuming than state-of-the-art methods, achieves higher precision and recall.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783031314377</identifier><identifier>ISBN: 3031314379</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783031314384</identifier><identifier>EISBN: 3031314387</identifier><identifier>DOI: 10.1007/978-3-031-31438-4_17</identifier><identifier>OCLC: 1378063364</identifier><identifier>LCCallNum: TK5102.9</identifier><language>eng</language><publisher>Switzerland: Springer International Publishing AG</publisher><subject>Computer Science ; Correlation ; Image Processing ; Neural networks ; Segmentation</subject><ispartof>Image Analysis, 2023, Vol.13886, p.245-259</ispartof><rights>The Author(s), under exclusive license to Springer Nature Switzerland AG 2023</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/7241948-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/978-3-031-31438-4_17$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-031-31438-4_17$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,310,311,781,782,786,791,792,795,887,4052,4053,27932,38262,41449,42518</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04492582$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Gade, Rikke</contributor><contributor>Kämäräinen, Joni-Kristian</contributor><contributor>Felsberg, Michael</contributor><contributor>Gade, Rikke</contributor><contributor>Felsberg, Michael</contributor><contributor>Kämäräinen, Joni-Kristian</contributor><creatorcontrib>Renaudeau, Arthur</creatorcontrib><creatorcontrib>Seng, Travis</creatorcontrib><creatorcontrib>Carlier, Axel</creatorcontrib><creatorcontrib>Durou, Jean-Denis</creatorcontrib><title>Correl-Net: Defect Segmentation in Old Films Using Correlation Networks</title><title>Image Analysis</title><description>The old film restoration process involves many operations, one of which is the ability to identify defects that altered the film. This operation can be formulated as a binary segmentation problem and solved using state-of-the-art segmentation networks such as DeepLab v3+ or NAS-FPN. While being very powerful at describing the spatial characteristics of defects, these methods fail to take into account the fact that defects are also temporal anomalies. We therefore propose an architecture that builds on the correlation layer introduced in FlowNet to compensate for motion and eliminate potential false positives, features that look like defects but can be tracked over multiple images and are actually part of the scene. We also introduce a self-supervised pre-training process of the network, which precedes a fine-tuning phase to specifically adapt the detector to each film. Results show that our architecture, while being more compact and less resource-consuming than state-of-the-art methods, achieves higher precision and recall.</description><subject>Computer Science</subject><subject>Correlation</subject><subject>Image Processing</subject><subject>Neural networks</subject><subject>Segmentation</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783031314377</isbn><isbn>3031314379</isbn><isbn>9783031314384</isbn><isbn>3031314387</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2023</creationdate><recordtype>book_chapter</recordtype><recordid>eNpVkDtPwzAQx81TFOg3YMjKYLB9bmyzofKUKjpA55PrOG0gTYodQHx7HMLCdNL_cbr7EXLG2QVnTF0apSlQBpwCl6CpRK52yDjJkMRfTe6SEc95SoA0e_88pfbJiAET1CgJh-SYg9IsB8jlERnH-MoYE1qDyc2I3E_bEHxNn3x3ld340rsue_arjW8621Vtk1VNNq-L7K6qNzFbxKpZZUNlsFPvqw1v8ZQclLaOfvw3T8ji7vZl-kBn8_vH6fWMrgVoRZ02zhlnJ6YEJqWHYunUpHBQqCSWxcT0z5XOeWdhWZrkc-W5kX7JRZkzOCHnw961rXEbqo0N39jaCh-uZ9hraasREy0-ecqKIRtTsFn5gMu2fYvIGfaYMTFDwEQNf5FijzmV5FDahvb9w8cOfd9yCUiwtVvbbedDRCVkukqjAIEi3fUDiz16QQ</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Renaudeau, Arthur</creator><creator>Seng, Travis</creator><creator>Carlier, Axel</creator><creator>Durou, Jean-Denis</creator><general>Springer International Publishing AG</general><general>Springer Nature Switzerland</general><scope>FFUUA</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>2023</creationdate><title>Correl-Net: Defect Segmentation in Old Films Using Correlation Networks</title><author>Renaudeau, Arthur ; Seng, Travis ; Carlier, Axel ; Durou, Jean-Denis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h2387-c89cc9ca59f3044e3dbc75dc3d7ca5fd591438fcceca3bf93db17e194eb12f603</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Computer Science</topic><topic>Correlation</topic><topic>Image Processing</topic><topic>Neural networks</topic><topic>Segmentation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Renaudeau, Arthur</creatorcontrib><creatorcontrib>Seng, Travis</creatorcontrib><creatorcontrib>Carlier, Axel</creatorcontrib><creatorcontrib>Durou, Jean-Denis</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Renaudeau, Arthur</au><au>Seng, Travis</au><au>Carlier, Axel</au><au>Durou, Jean-Denis</au><au>Gade, Rikke</au><au>Kämäräinen, Joni-Kristian</au><au>Felsberg, Michael</au><au>Gade, Rikke</au><au>Felsberg, Michael</au><au>Kämäräinen, Joni-Kristian</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Correl-Net: Defect Segmentation in Old Films Using Correlation Networks</atitle><btitle>Image Analysis</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2023</date><risdate>2023</risdate><volume>13886</volume><spage>245</spage><epage>259</epage><pages>245-259</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783031314377</isbn><isbn>3031314379</isbn><eisbn>9783031314384</eisbn><eisbn>3031314387</eisbn><abstract>The old film restoration process involves many operations, one of which is the ability to identify defects that altered the film. This operation can be formulated as a binary segmentation problem and solved using state-of-the-art segmentation networks such as DeepLab v3+ or NAS-FPN. While being very powerful at describing the spatial characteristics of defects, these methods fail to take into account the fact that defects are also temporal anomalies. We therefore propose an architecture that builds on the correlation layer introduced in FlowNet to compensate for motion and eliminate potential false positives, features that look like defects but can be tracked over multiple images and are actually part of the scene. We also introduce a self-supervised pre-training process of the network, which precedes a fine-tuning phase to specifically adapt the detector to each film. Results show that our architecture, while being more compact and less resource-consuming than state-of-the-art methods, achieves higher precision and recall.</abstract><cop>Switzerland</cop><pub>Springer International Publishing AG</pub><doi>10.1007/978-3-031-31438-4_17</doi><oclcid>1378063364</oclcid><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Image Analysis, 2023, Vol.13886, p.245-259 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04492582v1 |
source | Springer Books |
subjects | Computer Science Correlation Image Processing Neural networks Segmentation |
title | Correl-Net: Defect Segmentation in Old Films Using Correlation Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T12%3A28%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Correl-Net:%20Defect%20Segmentation%20in%20Old%20Films%20Using%20Correlation%20Networks&rft.btitle=Image%20Analysis&rft.au=Renaudeau,%20Arthur&rft.date=2023&rft.volume=13886&rft.spage=245&rft.epage=259&rft.pages=245-259&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783031314377&rft.isbn_list=3031314379&rft_id=info:doi/10.1007/978-3-031-31438-4_17&rft_dat=%3Cproquest_hal_p%3EEBC7241948_232_260%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783031314384&rft.eisbn_list=3031314387&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC7241948_232_260&rft_id=info:pmid/&rfr_iscdi=true |