Correl-Net: Defect Segmentation in Old Films Using Correlation Networks

The old film restoration process involves many operations, one of which is the ability to identify defects that altered the film. This operation can be formulated as a binary segmentation problem and solved using state-of-the-art segmentation networks such as DeepLab v3+ or NAS-FPN. While being very...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Renaudeau, Arthur, Seng, Travis, Carlier, Axel, Durou, Jean-Denis
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 259
container_issue
container_start_page 245
container_title
container_volume 13886
creator Renaudeau, Arthur
Seng, Travis
Carlier, Axel
Durou, Jean-Denis
description The old film restoration process involves many operations, one of which is the ability to identify defects that altered the film. This operation can be formulated as a binary segmentation problem and solved using state-of-the-art segmentation networks such as DeepLab v3+ or NAS-FPN. While being very powerful at describing the spatial characteristics of defects, these methods fail to take into account the fact that defects are also temporal anomalies. We therefore propose an architecture that builds on the correlation layer introduced in FlowNet to compensate for motion and eliminate potential false positives, features that look like defects but can be tracked over multiple images and are actually part of the scene. We also introduce a self-supervised pre-training process of the network, which precedes a fine-tuning phase to specifically adapt the detector to each film. Results show that our architecture, while being more compact and less resource-consuming than state-of-the-art methods, achieves higher precision and recall.
doi_str_mv 10.1007/978-3-031-31438-4_17
format Book Chapter
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04492582v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC7241948_232_260</sourcerecordid><originalsourceid>FETCH-LOGICAL-h2387-c89cc9ca59f3044e3dbc75dc3d7ca5fd591438fcceca3bf93db17e194eb12f603</originalsourceid><addsrcrecordid>eNpVkDtPwzAQx81TFOg3YMjKYLB9bmyzofKUKjpA55PrOG0gTYodQHx7HMLCdNL_cbr7EXLG2QVnTF0apSlQBpwCl6CpRK52yDjJkMRfTe6SEc95SoA0e_88pfbJiAET1CgJh-SYg9IsB8jlERnH-MoYE1qDyc2I3E_bEHxNn3x3ld340rsue_arjW8621Vtk1VNNq-L7K6qNzFbxKpZZUNlsFPvqw1v8ZQclLaOfvw3T8ji7vZl-kBn8_vH6fWMrgVoRZ02zhlnJ6YEJqWHYunUpHBQqCSWxcT0z5XOeWdhWZrkc-W5kX7JRZkzOCHnw961rXEbqo0N39jaCh-uZ9hraasREy0-ecqKIRtTsFn5gMu2fYvIGfaYMTFDwEQNf5FijzmV5FDahvb9w8cOfd9yCUiwtVvbbedDRCVkukqjAIEi3fUDiz16QQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC7241948_232_260</pqid></control><display><type>book_chapter</type><title>Correl-Net: Defect Segmentation in Old Films Using Correlation Networks</title><source>Springer Books</source><creator>Renaudeau, Arthur ; Seng, Travis ; Carlier, Axel ; Durou, Jean-Denis</creator><contributor>Gade, Rikke ; Kämäräinen, Joni-Kristian ; Felsberg, Michael ; Gade, Rikke ; Felsberg, Michael ; Kämäräinen, Joni-Kristian</contributor><creatorcontrib>Renaudeau, Arthur ; Seng, Travis ; Carlier, Axel ; Durou, Jean-Denis ; Gade, Rikke ; Kämäräinen, Joni-Kristian ; Felsberg, Michael ; Gade, Rikke ; Felsberg, Michael ; Kämäräinen, Joni-Kristian</creatorcontrib><description>The old film restoration process involves many operations, one of which is the ability to identify defects that altered the film. This operation can be formulated as a binary segmentation problem and solved using state-of-the-art segmentation networks such as DeepLab v3+ or NAS-FPN. While being very powerful at describing the spatial characteristics of defects, these methods fail to take into account the fact that defects are also temporal anomalies. We therefore propose an architecture that builds on the correlation layer introduced in FlowNet to compensate for motion and eliminate potential false positives, features that look like defects but can be tracked over multiple images and are actually part of the scene. We also introduce a self-supervised pre-training process of the network, which precedes a fine-tuning phase to specifically adapt the detector to each film. Results show that our architecture, while being more compact and less resource-consuming than state-of-the-art methods, achieves higher precision and recall.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783031314377</identifier><identifier>ISBN: 3031314379</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783031314384</identifier><identifier>EISBN: 3031314387</identifier><identifier>DOI: 10.1007/978-3-031-31438-4_17</identifier><identifier>OCLC: 1378063364</identifier><identifier>LCCallNum: TK5102.9</identifier><language>eng</language><publisher>Switzerland: Springer International Publishing AG</publisher><subject>Computer Science ; Correlation ; Image Processing ; Neural networks ; Segmentation</subject><ispartof>Image Analysis, 2023, Vol.13886, p.245-259</ispartof><rights>The Author(s), under exclusive license to Springer Nature Switzerland AG 2023</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/7241948-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/978-3-031-31438-4_17$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-031-31438-4_17$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,310,311,781,782,786,791,792,795,887,4052,4053,27932,38262,41449,42518</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04492582$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Gade, Rikke</contributor><contributor>Kämäräinen, Joni-Kristian</contributor><contributor>Felsberg, Michael</contributor><contributor>Gade, Rikke</contributor><contributor>Felsberg, Michael</contributor><contributor>Kämäräinen, Joni-Kristian</contributor><creatorcontrib>Renaudeau, Arthur</creatorcontrib><creatorcontrib>Seng, Travis</creatorcontrib><creatorcontrib>Carlier, Axel</creatorcontrib><creatorcontrib>Durou, Jean-Denis</creatorcontrib><title>Correl-Net: Defect Segmentation in Old Films Using Correlation Networks</title><title>Image Analysis</title><description>The old film restoration process involves many operations, one of which is the ability to identify defects that altered the film. This operation can be formulated as a binary segmentation problem and solved using state-of-the-art segmentation networks such as DeepLab v3+ or NAS-FPN. While being very powerful at describing the spatial characteristics of defects, these methods fail to take into account the fact that defects are also temporal anomalies. We therefore propose an architecture that builds on the correlation layer introduced in FlowNet to compensate for motion and eliminate potential false positives, features that look like defects but can be tracked over multiple images and are actually part of the scene. We also introduce a self-supervised pre-training process of the network, which precedes a fine-tuning phase to specifically adapt the detector to each film. Results show that our architecture, while being more compact and less resource-consuming than state-of-the-art methods, achieves higher precision and recall.</description><subject>Computer Science</subject><subject>Correlation</subject><subject>Image Processing</subject><subject>Neural networks</subject><subject>Segmentation</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783031314377</isbn><isbn>3031314379</isbn><isbn>9783031314384</isbn><isbn>3031314387</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2023</creationdate><recordtype>book_chapter</recordtype><recordid>eNpVkDtPwzAQx81TFOg3YMjKYLB9bmyzofKUKjpA55PrOG0gTYodQHx7HMLCdNL_cbr7EXLG2QVnTF0apSlQBpwCl6CpRK52yDjJkMRfTe6SEc95SoA0e_88pfbJiAET1CgJh-SYg9IsB8jlERnH-MoYE1qDyc2I3E_bEHxNn3x3ld340rsue_arjW8621Vtk1VNNq-L7K6qNzFbxKpZZUNlsFPvqw1v8ZQclLaOfvw3T8ji7vZl-kBn8_vH6fWMrgVoRZ02zhlnJ6YEJqWHYunUpHBQqCSWxcT0z5XOeWdhWZrkc-W5kX7JRZkzOCHnw961rXEbqo0N39jaCh-uZ9hraasREy0-ecqKIRtTsFn5gMu2fYvIGfaYMTFDwEQNf5FijzmV5FDahvb9w8cOfd9yCUiwtVvbbedDRCVkukqjAIEi3fUDiz16QQ</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Renaudeau, Arthur</creator><creator>Seng, Travis</creator><creator>Carlier, Axel</creator><creator>Durou, Jean-Denis</creator><general>Springer International Publishing AG</general><general>Springer Nature Switzerland</general><scope>FFUUA</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>2023</creationdate><title>Correl-Net: Defect Segmentation in Old Films Using Correlation Networks</title><author>Renaudeau, Arthur ; Seng, Travis ; Carlier, Axel ; Durou, Jean-Denis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h2387-c89cc9ca59f3044e3dbc75dc3d7ca5fd591438fcceca3bf93db17e194eb12f603</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Computer Science</topic><topic>Correlation</topic><topic>Image Processing</topic><topic>Neural networks</topic><topic>Segmentation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Renaudeau, Arthur</creatorcontrib><creatorcontrib>Seng, Travis</creatorcontrib><creatorcontrib>Carlier, Axel</creatorcontrib><creatorcontrib>Durou, Jean-Denis</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Renaudeau, Arthur</au><au>Seng, Travis</au><au>Carlier, Axel</au><au>Durou, Jean-Denis</au><au>Gade, Rikke</au><au>Kämäräinen, Joni-Kristian</au><au>Felsberg, Michael</au><au>Gade, Rikke</au><au>Felsberg, Michael</au><au>Kämäräinen, Joni-Kristian</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Correl-Net: Defect Segmentation in Old Films Using Correlation Networks</atitle><btitle>Image Analysis</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2023</date><risdate>2023</risdate><volume>13886</volume><spage>245</spage><epage>259</epage><pages>245-259</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783031314377</isbn><isbn>3031314379</isbn><eisbn>9783031314384</eisbn><eisbn>3031314387</eisbn><abstract>The old film restoration process involves many operations, one of which is the ability to identify defects that altered the film. This operation can be formulated as a binary segmentation problem and solved using state-of-the-art segmentation networks such as DeepLab v3+ or NAS-FPN. While being very powerful at describing the spatial characteristics of defects, these methods fail to take into account the fact that defects are also temporal anomalies. We therefore propose an architecture that builds on the correlation layer introduced in FlowNet to compensate for motion and eliminate potential false positives, features that look like defects but can be tracked over multiple images and are actually part of the scene. We also introduce a self-supervised pre-training process of the network, which precedes a fine-tuning phase to specifically adapt the detector to each film. Results show that our architecture, while being more compact and less resource-consuming than state-of-the-art methods, achieves higher precision and recall.</abstract><cop>Switzerland</cop><pub>Springer International Publishing AG</pub><doi>10.1007/978-3-031-31438-4_17</doi><oclcid>1378063364</oclcid><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Image Analysis, 2023, Vol.13886, p.245-259
issn 0302-9743
1611-3349
language eng
recordid cdi_hal_primary_oai_HAL_hal_04492582v1
source Springer Books
subjects Computer Science
Correlation
Image Processing
Neural networks
Segmentation
title Correl-Net: Defect Segmentation in Old Films Using Correlation Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T16%3A49%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Correl-Net:%20Defect%20Segmentation%20in%20Old%20Films%20Using%20Correlation%20Networks&rft.btitle=Image%20Analysis&rft.au=Renaudeau,%20Arthur&rft.date=2023&rft.volume=13886&rft.spage=245&rft.epage=259&rft.pages=245-259&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783031314377&rft.isbn_list=3031314379&rft_id=info:doi/10.1007/978-3-031-31438-4_17&rft_dat=%3Cproquest_hal_p%3EEBC7241948_232_260%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783031314384&rft.eisbn_list=3031314387&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC7241948_232_260&rft_id=info:pmid/&rfr_iscdi=true