Dissipation-based proper orthogonal decomposition of turbulent Rayleigh–Bénard convection flow
We present a formulation of proper orthogonal decomposition (POD) producing a velocity–temperature basis optimized with respect to an H1 dissipation norm. This decomposition is applied, along with a conventional POD optimized with respect to an L2 energy norm, to a dataset generated from a direct nu...
Gespeichert in:
Veröffentlicht in: | Physics of fluids (1994) 2024-03, Vol.36 (3) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | |
container_title | Physics of fluids (1994) |
container_volume | 36 |
creator | Olesen, P. J. Soucasse, L. Podvin, B. Velte, C. M. |
description | We present a formulation of proper orthogonal decomposition (POD) producing a velocity–temperature basis optimized with respect to an H1 dissipation norm. This decomposition is applied, along with a conventional POD optimized with respect to an L2 energy norm, to a dataset generated from a direct numerical simulation of Rayleigh–Bénard convection in a cubic cell (
Ra
=
10
7
,
Pr
=
0.707). The dataset is enriched using symmetries of the cell, and we formally link symmetrization to degeneracies and to the separation of the POD bases into subspaces with distinct symmetries. We compare the two decompositions, demonstrating that each of the 20 lowest dissipation modes is analogous to one of the 20 lowest energy modes. Reordering of modes between the decompositions is limited, although a corner mode known to be crucial for reorientations of the large-scale circulation is promoted in the dissipation decomposition, indicating suitability of the dissipation decomposition for capturing dynamically important structures. Dissipation modes are shown to exhibit enhanced activity in boundary layers. Reconstructing kinetic and thermal energy, viscous and thermal dissipation, and convective heat flux, we show that the dissipation decomposition improves overall convergence of each quantity in the boundary layer. Asymptotic convergence rates are nearly constant among the quantities reconstructed globally using the dissipation decomposition, indicating that a range of dynamically relevant scales is efficiently captured. We discuss the implications of the findings for using the dissipation decomposition in modeling and argue that the H1 norm allows for a better modal representation of the flow dynamics. |
doi_str_mv | 10.1063/5.0188430 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04491215v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2937430018</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-ab357646c760b403370f0a03a52e4522cce0fc2f66835dea378bc47a9c0472ab3</originalsourceid><addsrcrecordid>eNp9kMtKw0AUhoMoWKsL3yDgSiH1zCUzybJeKxQE0fUwmUzaKWkmziSV7nwHn8Ln8E18EpO26M7VORy-88P_BcEpghECRi7jEaAkoQT2ggGCJI04Y2y_3zlEjBF0GBx5vwAAkmI2COSN8d7UsjG2ijLpdR7WztbahdY1czuzlSzDXCu7rK03PRXaImxal7WlrprwSa5LbWbz7_ePq6_PSro8VLZaabVBi9K-HQcHhSy9PtnNYfByd_t8PYmmj_cP1-NppAhDTSQzEnNGmeIMMgqEcChAApEx1jTGWCkNhcIFYwmJcy0JTzJFuUwVUI6772Fwvs2dy1LUziylWwsrjZiMp6K_AaUpwiheoY4927Jd19dW-0YsbOu6ql7glPBOX2fxL1E5673TxW8sAtHbFrHY2e7Yiy3rlWk2Nv-BfwD2S4Cb</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2937430018</pqid></control><display><type>article</type><title>Dissipation-based proper orthogonal decomposition of turbulent Rayleigh–Bénard convection flow</title><source>Scitation (American Institute of Physics)</source><creator>Olesen, P. J. ; Soucasse, L. ; Podvin, B. ; Velte, C. M.</creator><creatorcontrib>Olesen, P. J. ; Soucasse, L. ; Podvin, B. ; Velte, C. M.</creatorcontrib><description>We present a formulation of proper orthogonal decomposition (POD) producing a velocity–temperature basis optimized with respect to an H1 dissipation norm. This decomposition is applied, along with a conventional POD optimized with respect to an L2 energy norm, to a dataset generated from a direct numerical simulation of Rayleigh–Bénard convection in a cubic cell (
Ra
=
10
7
,
Pr
=
0.707). The dataset is enriched using symmetries of the cell, and we formally link symmetrization to degeneracies and to the separation of the POD bases into subspaces with distinct symmetries. We compare the two decompositions, demonstrating that each of the 20 lowest dissipation modes is analogous to one of the 20 lowest energy modes. Reordering of modes between the decompositions is limited, although a corner mode known to be crucial for reorientations of the large-scale circulation is promoted in the dissipation decomposition, indicating suitability of the dissipation decomposition for capturing dynamically important structures. Dissipation modes are shown to exhibit enhanced activity in boundary layers. Reconstructing kinetic and thermal energy, viscous and thermal dissipation, and convective heat flux, we show that the dissipation decomposition improves overall convergence of each quantity in the boundary layer. Asymptotic convergence rates are nearly constant among the quantities reconstructed globally using the dissipation decomposition, indicating that a range of dynamically relevant scales is efficiently captured. We discuss the implications of the findings for using the dissipation decomposition in modeling and argue that the H1 norm allows for a better modal representation of the flow dynamics.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0188430</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Convergence ; Datasets ; Decomposition ; Direct numerical simulation ; Dissipation ; Engineering Sciences ; Fluids mechanics ; Heat flux ; Mathematical models ; Mechanics ; Proper Orthogonal Decomposition ; Rayleigh-Benard convection ; Subspaces ; Thermal boundary layer ; Thermal energy</subject><ispartof>Physics of fluids (1994), 2024-03, Vol.36 (3)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-ab357646c760b403370f0a03a52e4522cce0fc2f66835dea378bc47a9c0472ab3</citedby><cites>FETCH-LOGICAL-c361t-ab357646c760b403370f0a03a52e4522cce0fc2f66835dea378bc47a9c0472ab3</cites><orcidid>0000-0001-7003-719X ; 0000-0003-3444-493X ; 0000-0002-5422-8794 ; 0000-0002-8657-0383</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,790,881,4498,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04491215$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Olesen, P. J.</creatorcontrib><creatorcontrib>Soucasse, L.</creatorcontrib><creatorcontrib>Podvin, B.</creatorcontrib><creatorcontrib>Velte, C. M.</creatorcontrib><title>Dissipation-based proper orthogonal decomposition of turbulent Rayleigh–Bénard convection flow</title><title>Physics of fluids (1994)</title><description>We present a formulation of proper orthogonal decomposition (POD) producing a velocity–temperature basis optimized with respect to an H1 dissipation norm. This decomposition is applied, along with a conventional POD optimized with respect to an L2 energy norm, to a dataset generated from a direct numerical simulation of Rayleigh–Bénard convection in a cubic cell (
Ra
=
10
7
,
Pr
=
0.707). The dataset is enriched using symmetries of the cell, and we formally link symmetrization to degeneracies and to the separation of the POD bases into subspaces with distinct symmetries. We compare the two decompositions, demonstrating that each of the 20 lowest dissipation modes is analogous to one of the 20 lowest energy modes. Reordering of modes between the decompositions is limited, although a corner mode known to be crucial for reorientations of the large-scale circulation is promoted in the dissipation decomposition, indicating suitability of the dissipation decomposition for capturing dynamically important structures. Dissipation modes are shown to exhibit enhanced activity in boundary layers. Reconstructing kinetic and thermal energy, viscous and thermal dissipation, and convective heat flux, we show that the dissipation decomposition improves overall convergence of each quantity in the boundary layer. Asymptotic convergence rates are nearly constant among the quantities reconstructed globally using the dissipation decomposition, indicating that a range of dynamically relevant scales is efficiently captured. We discuss the implications of the findings for using the dissipation decomposition in modeling and argue that the H1 norm allows for a better modal representation of the flow dynamics.</description><subject>Convergence</subject><subject>Datasets</subject><subject>Decomposition</subject><subject>Direct numerical simulation</subject><subject>Dissipation</subject><subject>Engineering Sciences</subject><subject>Fluids mechanics</subject><subject>Heat flux</subject><subject>Mathematical models</subject><subject>Mechanics</subject><subject>Proper Orthogonal Decomposition</subject><subject>Rayleigh-Benard convection</subject><subject>Subspaces</subject><subject>Thermal boundary layer</subject><subject>Thermal energy</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKw0AUhoMoWKsL3yDgSiH1zCUzybJeKxQE0fUwmUzaKWkmziSV7nwHn8Ln8E18EpO26M7VORy-88P_BcEpghECRi7jEaAkoQT2ggGCJI04Y2y_3zlEjBF0GBx5vwAAkmI2COSN8d7UsjG2ijLpdR7WztbahdY1czuzlSzDXCu7rK03PRXaImxal7WlrprwSa5LbWbz7_ePq6_PSro8VLZaabVBi9K-HQcHhSy9PtnNYfByd_t8PYmmj_cP1-NppAhDTSQzEnNGmeIMMgqEcChAApEx1jTGWCkNhcIFYwmJcy0JTzJFuUwVUI6772Fwvs2dy1LUziylWwsrjZiMp6K_AaUpwiheoY4927Jd19dW-0YsbOu6ql7glPBOX2fxL1E5673TxW8sAtHbFrHY2e7Yiy3rlWk2Nv-BfwD2S4Cb</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Olesen, P. J.</creator><creator>Soucasse, L.</creator><creator>Podvin, B.</creator><creator>Velte, C. M.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-7003-719X</orcidid><orcidid>https://orcid.org/0000-0003-3444-493X</orcidid><orcidid>https://orcid.org/0000-0002-5422-8794</orcidid><orcidid>https://orcid.org/0000-0002-8657-0383</orcidid></search><sort><creationdate>20240301</creationdate><title>Dissipation-based proper orthogonal decomposition of turbulent Rayleigh–Bénard convection flow</title><author>Olesen, P. J. ; Soucasse, L. ; Podvin, B. ; Velte, C. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-ab357646c760b403370f0a03a52e4522cce0fc2f66835dea378bc47a9c0472ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Convergence</topic><topic>Datasets</topic><topic>Decomposition</topic><topic>Direct numerical simulation</topic><topic>Dissipation</topic><topic>Engineering Sciences</topic><topic>Fluids mechanics</topic><topic>Heat flux</topic><topic>Mathematical models</topic><topic>Mechanics</topic><topic>Proper Orthogonal Decomposition</topic><topic>Rayleigh-Benard convection</topic><topic>Subspaces</topic><topic>Thermal boundary layer</topic><topic>Thermal energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Olesen, P. J.</creatorcontrib><creatorcontrib>Soucasse, L.</creatorcontrib><creatorcontrib>Podvin, B.</creatorcontrib><creatorcontrib>Velte, C. M.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Olesen, P. J.</au><au>Soucasse, L.</au><au>Podvin, B.</au><au>Velte, C. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dissipation-based proper orthogonal decomposition of turbulent Rayleigh–Bénard convection flow</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2024-03-01</date><risdate>2024</risdate><volume>36</volume><issue>3</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>We present a formulation of proper orthogonal decomposition (POD) producing a velocity–temperature basis optimized with respect to an H1 dissipation norm. This decomposition is applied, along with a conventional POD optimized with respect to an L2 energy norm, to a dataset generated from a direct numerical simulation of Rayleigh–Bénard convection in a cubic cell (
Ra
=
10
7
,
Pr
=
0.707). The dataset is enriched using symmetries of the cell, and we formally link symmetrization to degeneracies and to the separation of the POD bases into subspaces with distinct symmetries. We compare the two decompositions, demonstrating that each of the 20 lowest dissipation modes is analogous to one of the 20 lowest energy modes. Reordering of modes between the decompositions is limited, although a corner mode known to be crucial for reorientations of the large-scale circulation is promoted in the dissipation decomposition, indicating suitability of the dissipation decomposition for capturing dynamically important structures. Dissipation modes are shown to exhibit enhanced activity in boundary layers. Reconstructing kinetic and thermal energy, viscous and thermal dissipation, and convective heat flux, we show that the dissipation decomposition improves overall convergence of each quantity in the boundary layer. Asymptotic convergence rates are nearly constant among the quantities reconstructed globally using the dissipation decomposition, indicating that a range of dynamically relevant scales is efficiently captured. We discuss the implications of the findings for using the dissipation decomposition in modeling and argue that the H1 norm allows for a better modal representation of the flow dynamics.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0188430</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0001-7003-719X</orcidid><orcidid>https://orcid.org/0000-0003-3444-493X</orcidid><orcidid>https://orcid.org/0000-0002-5422-8794</orcidid><orcidid>https://orcid.org/0000-0002-8657-0383</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-6631 |
ispartof | Physics of fluids (1994), 2024-03, Vol.36 (3) |
issn | 1070-6631 1089-7666 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04491215v1 |
source | Scitation (American Institute of Physics) |
subjects | Convergence Datasets Decomposition Direct numerical simulation Dissipation Engineering Sciences Fluids mechanics Heat flux Mathematical models Mechanics Proper Orthogonal Decomposition Rayleigh-Benard convection Subspaces Thermal boundary layer Thermal energy |
title | Dissipation-based proper orthogonal decomposition of turbulent Rayleigh–Bénard convection flow |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T14%3A19%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dissipation-based%20proper%20orthogonal%20decomposition%20of%20turbulent%20Rayleigh%E2%80%93B%C3%A9nard%20convection%20flow&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Olesen,%20P.%20J.&rft.date=2024-03-01&rft.volume=36&rft.issue=3&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0188430&rft_dat=%3Cproquest_hal_p%3E2937430018%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2937430018&rft_id=info:pmid/&rfr_iscdi=true |