ExoMars Raman Laser Spectrometer: A Tool for the Potential Recognition of Wet-Target Craters on Mars

In the present work, near-infrared, laser-induced breakdown spectroscopy, Raman, and X-ray diffractometer techniques have been complementarily used to carry out a comprehensive characterization of a terrestrial analogue selected from the Chesapeake Bay impact structure (CBIS). The obtained data clea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astrobiology 2020-03, Vol.20 (3), p.349-363
Hauptverfasser: Veneranda, Marco, Lopez-Reyes, Guillermo, Manrique, José Antonio, Medina, Jesus, Ruiz-Galende, Patricia, Torre-Fdez, Imanol, Castro, Kepa, Lantz, Cateline, Poulet, François, Dypvik, Henning, Werner, Stephanie C, Rull, Fernando
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 363
container_issue 3
container_start_page 349
container_title Astrobiology
container_volume 20
creator Veneranda, Marco
Lopez-Reyes, Guillermo
Manrique, José Antonio
Medina, Jesus
Ruiz-Galende, Patricia
Torre-Fdez, Imanol
Castro, Kepa
Lantz, Cateline
Poulet, François
Dypvik, Henning
Werner, Stephanie C
Rull, Fernando
description In the present work, near-infrared, laser-induced breakdown spectroscopy, Raman, and X-ray diffractometer techniques have been complementarily used to carry out a comprehensive characterization of a terrestrial analogue selected from the Chesapeake Bay impact structure (CBIS). The obtained data clearly highlight the key role of Raman spectroscopy in the detection of minor and trace compounds, through which inferences about geological processes occurred in the CBIS can be extrapolated. Beside the use of commercial systems, further Raman analyses were performed by the Raman laser spectrometer (RLS) ExoMars Simulator. This instrument represents the most reliable tool to effectively predict the scientific capabilities of the ExoMars/Raman system that will be deployed on Mars in 2021. By emulating the analytical procedures and operational restrictions established by the ExoMars mission rover design, it was proved that the RLS ExoMars Simulator can detect the amorphization of quartz, which constitutes an analytical clue of the impact origin of craters. Beside amorphized minerals, the detection of barite and siderite, compounds crystallizing under hydrothermal conditions, helps indirectly to confirm the presence of water in impact targets. Furthermore, the RLS ExoMars Simulator capability of performing smart molecular mappings was successfully evaluated.
doi_str_mv 10.1089/ast.2019.2095
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04490149v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2346294762</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-f9f18bfe7f63c80a424d3c30a4ee09fe579e538d246418aecd55530e7ce4544c3</originalsourceid><addsrcrecordid>eNpdkU1PxCAQhonR-H30aki86KEKBdribbNR12SNZl3jkSAdtKYtK7BG_700u3rwwkyYhzdDHoSOKDmnpJIXOsTznFCZDik20C4VoswqUpLNoWc0o6TkO2gvhHdCKMtlsY12GJWVyItqF9VXX-5O-4BnutM9nuoAHj8uwETvOojgL_EIz51rsXUexzfADy5CHxvd4hkY99o3sXE9dhY_Q8zm2r9CxGOv09OA02AIP0BbVrcBDtd1Hz1dX83Hk2x6f3M7Hk0zw4SImZWWVi8WSlswUxHNc14zw1IDQKQFUUoQrKpzXnBaaTC1EIIRKA1wwblh--hslfumW7XwTaf9t3K6UZPRVA13hHNJKJefNLGnK3bh3ccSQlRdEwy0re7BLYPKGS9yycsiT-jJP_TdLX2ffpKoQkpKSz5Q2Yoy3oXgwf5tQIkaVKmkSg2q1KAq8cfr1OVLB_Uf_euG_QCG040l</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2369911742</pqid></control><display><type>article</type><title>ExoMars Raman Laser Spectrometer: A Tool for the Potential Recognition of Wet-Target Craters on Mars</title><source>Alma/SFX Local Collection</source><creator>Veneranda, Marco ; Lopez-Reyes, Guillermo ; Manrique, José Antonio ; Medina, Jesus ; Ruiz-Galende, Patricia ; Torre-Fdez, Imanol ; Castro, Kepa ; Lantz, Cateline ; Poulet, François ; Dypvik, Henning ; Werner, Stephanie C ; Rull, Fernando</creator><creatorcontrib>Veneranda, Marco ; Lopez-Reyes, Guillermo ; Manrique, José Antonio ; Medina, Jesus ; Ruiz-Galende, Patricia ; Torre-Fdez, Imanol ; Castro, Kepa ; Lantz, Cateline ; Poulet, François ; Dypvik, Henning ; Werner, Stephanie C ; Rull, Fernando</creatorcontrib><description>In the present work, near-infrared, laser-induced breakdown spectroscopy, Raman, and X-ray diffractometer techniques have been complementarily used to carry out a comprehensive characterization of a terrestrial analogue selected from the Chesapeake Bay impact structure (CBIS). The obtained data clearly highlight the key role of Raman spectroscopy in the detection of minor and trace compounds, through which inferences about geological processes occurred in the CBIS can be extrapolated. Beside the use of commercial systems, further Raman analyses were performed by the Raman laser spectrometer (RLS) ExoMars Simulator. This instrument represents the most reliable tool to effectively predict the scientific capabilities of the ExoMars/Raman system that will be deployed on Mars in 2021. By emulating the analytical procedures and operational restrictions established by the ExoMars mission rover design, it was proved that the RLS ExoMars Simulator can detect the amorphization of quartz, which constitutes an analytical clue of the impact origin of craters. Beside amorphized minerals, the detection of barite and siderite, compounds crystallizing under hydrothermal conditions, helps indirectly to confirm the presence of water in impact targets. Furthermore, the RLS ExoMars Simulator capability of performing smart molecular mappings was successfully evaluated.</description><identifier>ISSN: 1531-1074</identifier><identifier>EISSN: 1557-8070</identifier><identifier>DOI: 10.1089/ast.2019.2095</identifier><identifier>PMID: 31985268</identifier><language>eng</language><publisher>United States: Mary Ann Liebert, Inc</publisher><subject>Amorphization ; Analytical methods ; Astrophysics ; Barite ; Detection ; Earth analogs ; Earth and Planetary Astrophysics ; Geological processes ; Infrared lasers ; Laser induced breakdown spectroscopy ; Lasers ; Mars ; Mars craters ; Mars missions ; Mars rovers ; Minerals ; Near infrared radiation ; Physics ; Procedures ; Raman lasers ; Raman spectroscopy ; Siderite ; Simulation ; Simulators ; Spectroscopy ; Spectrum analysis ; Target recognition ; Terrestrial environments</subject><ispartof>Astrobiology, 2020-03, Vol.20 (3), p.349-363</ispartof><rights>Copyright Mary Ann Liebert, Inc. Mar 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-f9f18bfe7f63c80a424d3c30a4ee09fe579e538d246418aecd55530e7ce4544c3</citedby><cites>FETCH-LOGICAL-c355t-f9f18bfe7f63c80a424d3c30a4ee09fe579e538d246418aecd55530e7ce4544c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31985268$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04490149$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Veneranda, Marco</creatorcontrib><creatorcontrib>Lopez-Reyes, Guillermo</creatorcontrib><creatorcontrib>Manrique, José Antonio</creatorcontrib><creatorcontrib>Medina, Jesus</creatorcontrib><creatorcontrib>Ruiz-Galende, Patricia</creatorcontrib><creatorcontrib>Torre-Fdez, Imanol</creatorcontrib><creatorcontrib>Castro, Kepa</creatorcontrib><creatorcontrib>Lantz, Cateline</creatorcontrib><creatorcontrib>Poulet, François</creatorcontrib><creatorcontrib>Dypvik, Henning</creatorcontrib><creatorcontrib>Werner, Stephanie C</creatorcontrib><creatorcontrib>Rull, Fernando</creatorcontrib><title>ExoMars Raman Laser Spectrometer: A Tool for the Potential Recognition of Wet-Target Craters on Mars</title><title>Astrobiology</title><addtitle>Astrobiology</addtitle><description>In the present work, near-infrared, laser-induced breakdown spectroscopy, Raman, and X-ray diffractometer techniques have been complementarily used to carry out a comprehensive characterization of a terrestrial analogue selected from the Chesapeake Bay impact structure (CBIS). The obtained data clearly highlight the key role of Raman spectroscopy in the detection of minor and trace compounds, through which inferences about geological processes occurred in the CBIS can be extrapolated. Beside the use of commercial systems, further Raman analyses were performed by the Raman laser spectrometer (RLS) ExoMars Simulator. This instrument represents the most reliable tool to effectively predict the scientific capabilities of the ExoMars/Raman system that will be deployed on Mars in 2021. By emulating the analytical procedures and operational restrictions established by the ExoMars mission rover design, it was proved that the RLS ExoMars Simulator can detect the amorphization of quartz, which constitutes an analytical clue of the impact origin of craters. Beside amorphized minerals, the detection of barite and siderite, compounds crystallizing under hydrothermal conditions, helps indirectly to confirm the presence of water in impact targets. Furthermore, the RLS ExoMars Simulator capability of performing smart molecular mappings was successfully evaluated.</description><subject>Amorphization</subject><subject>Analytical methods</subject><subject>Astrophysics</subject><subject>Barite</subject><subject>Detection</subject><subject>Earth analogs</subject><subject>Earth and Planetary Astrophysics</subject><subject>Geological processes</subject><subject>Infrared lasers</subject><subject>Laser induced breakdown spectroscopy</subject><subject>Lasers</subject><subject>Mars</subject><subject>Mars craters</subject><subject>Mars missions</subject><subject>Mars rovers</subject><subject>Minerals</subject><subject>Near infrared radiation</subject><subject>Physics</subject><subject>Procedures</subject><subject>Raman lasers</subject><subject>Raman spectroscopy</subject><subject>Siderite</subject><subject>Simulation</subject><subject>Simulators</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Target recognition</subject><subject>Terrestrial environments</subject><issn>1531-1074</issn><issn>1557-8070</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkU1PxCAQhonR-H30aki86KEKBdribbNR12SNZl3jkSAdtKYtK7BG_700u3rwwkyYhzdDHoSOKDmnpJIXOsTznFCZDik20C4VoswqUpLNoWc0o6TkO2gvhHdCKMtlsY12GJWVyItqF9VXX-5O-4BnutM9nuoAHj8uwETvOojgL_EIz51rsXUexzfADy5CHxvd4hkY99o3sXE9dhY_Q8zm2r9CxGOv09OA02AIP0BbVrcBDtd1Hz1dX83Hk2x6f3M7Hk0zw4SImZWWVi8WSlswUxHNc14zw1IDQKQFUUoQrKpzXnBaaTC1EIIRKA1wwblh--hslfumW7XwTaf9t3K6UZPRVA13hHNJKJefNLGnK3bh3ccSQlRdEwy0re7BLYPKGS9yycsiT-jJP_TdLX2ffpKoQkpKSz5Q2Yoy3oXgwf5tQIkaVKmkSg2q1KAq8cfr1OVLB_Uf_euG_QCG040l</recordid><startdate>202003</startdate><enddate>202003</enddate><creator>Veneranda, Marco</creator><creator>Lopez-Reyes, Guillermo</creator><creator>Manrique, José Antonio</creator><creator>Medina, Jesus</creator><creator>Ruiz-Galende, Patricia</creator><creator>Torre-Fdez, Imanol</creator><creator>Castro, Kepa</creator><creator>Lantz, Cateline</creator><creator>Poulet, François</creator><creator>Dypvik, Henning</creator><creator>Werner, Stephanie C</creator><creator>Rull, Fernando</creator><general>Mary Ann Liebert, Inc</general><general>Mary Ann Liebert</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>C1K</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>7X8</scope><scope>1XC</scope></search><sort><creationdate>202003</creationdate><title>ExoMars Raman Laser Spectrometer: A Tool for the Potential Recognition of Wet-Target Craters on Mars</title><author>Veneranda, Marco ; Lopez-Reyes, Guillermo ; Manrique, José Antonio ; Medina, Jesus ; Ruiz-Galende, Patricia ; Torre-Fdez, Imanol ; Castro, Kepa ; Lantz, Cateline ; Poulet, François ; Dypvik, Henning ; Werner, Stephanie C ; Rull, Fernando</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-f9f18bfe7f63c80a424d3c30a4ee09fe579e538d246418aecd55530e7ce4544c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Amorphization</topic><topic>Analytical methods</topic><topic>Astrophysics</topic><topic>Barite</topic><topic>Detection</topic><topic>Earth analogs</topic><topic>Earth and Planetary Astrophysics</topic><topic>Geological processes</topic><topic>Infrared lasers</topic><topic>Laser induced breakdown spectroscopy</topic><topic>Lasers</topic><topic>Mars</topic><topic>Mars craters</topic><topic>Mars missions</topic><topic>Mars rovers</topic><topic>Minerals</topic><topic>Near infrared radiation</topic><topic>Physics</topic><topic>Procedures</topic><topic>Raman lasers</topic><topic>Raman spectroscopy</topic><topic>Siderite</topic><topic>Simulation</topic><topic>Simulators</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Target recognition</topic><topic>Terrestrial environments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Veneranda, Marco</creatorcontrib><creatorcontrib>Lopez-Reyes, Guillermo</creatorcontrib><creatorcontrib>Manrique, José Antonio</creatorcontrib><creatorcontrib>Medina, Jesus</creatorcontrib><creatorcontrib>Ruiz-Galende, Patricia</creatorcontrib><creatorcontrib>Torre-Fdez, Imanol</creatorcontrib><creatorcontrib>Castro, Kepa</creatorcontrib><creatorcontrib>Lantz, Cateline</creatorcontrib><creatorcontrib>Poulet, François</creatorcontrib><creatorcontrib>Dypvik, Henning</creatorcontrib><creatorcontrib>Werner, Stephanie C</creatorcontrib><creatorcontrib>Rull, Fernando</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Astrobiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Veneranda, Marco</au><au>Lopez-Reyes, Guillermo</au><au>Manrique, José Antonio</au><au>Medina, Jesus</au><au>Ruiz-Galende, Patricia</au><au>Torre-Fdez, Imanol</au><au>Castro, Kepa</au><au>Lantz, Cateline</au><au>Poulet, François</au><au>Dypvik, Henning</au><au>Werner, Stephanie C</au><au>Rull, Fernando</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ExoMars Raman Laser Spectrometer: A Tool for the Potential Recognition of Wet-Target Craters on Mars</atitle><jtitle>Astrobiology</jtitle><addtitle>Astrobiology</addtitle><date>2020-03</date><risdate>2020</risdate><volume>20</volume><issue>3</issue><spage>349</spage><epage>363</epage><pages>349-363</pages><issn>1531-1074</issn><eissn>1557-8070</eissn><abstract>In the present work, near-infrared, laser-induced breakdown spectroscopy, Raman, and X-ray diffractometer techniques have been complementarily used to carry out a comprehensive characterization of a terrestrial analogue selected from the Chesapeake Bay impact structure (CBIS). The obtained data clearly highlight the key role of Raman spectroscopy in the detection of minor and trace compounds, through which inferences about geological processes occurred in the CBIS can be extrapolated. Beside the use of commercial systems, further Raman analyses were performed by the Raman laser spectrometer (RLS) ExoMars Simulator. This instrument represents the most reliable tool to effectively predict the scientific capabilities of the ExoMars/Raman system that will be deployed on Mars in 2021. By emulating the analytical procedures and operational restrictions established by the ExoMars mission rover design, it was proved that the RLS ExoMars Simulator can detect the amorphization of quartz, which constitutes an analytical clue of the impact origin of craters. Beside amorphized minerals, the detection of barite and siderite, compounds crystallizing under hydrothermal conditions, helps indirectly to confirm the presence of water in impact targets. Furthermore, the RLS ExoMars Simulator capability of performing smart molecular mappings was successfully evaluated.</abstract><cop>United States</cop><pub>Mary Ann Liebert, Inc</pub><pmid>31985268</pmid><doi>10.1089/ast.2019.2095</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1531-1074
ispartof Astrobiology, 2020-03, Vol.20 (3), p.349-363
issn 1531-1074
1557-8070
language eng
recordid cdi_hal_primary_oai_HAL_hal_04490149v1
source Alma/SFX Local Collection
subjects Amorphization
Analytical methods
Astrophysics
Barite
Detection
Earth analogs
Earth and Planetary Astrophysics
Geological processes
Infrared lasers
Laser induced breakdown spectroscopy
Lasers
Mars
Mars craters
Mars missions
Mars rovers
Minerals
Near infrared radiation
Physics
Procedures
Raman lasers
Raman spectroscopy
Siderite
Simulation
Simulators
Spectroscopy
Spectrum analysis
Target recognition
Terrestrial environments
title ExoMars Raman Laser Spectrometer: A Tool for the Potential Recognition of Wet-Target Craters on Mars
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T10%3A46%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ExoMars%20Raman%20Laser%20Spectrometer:%20A%20Tool%20for%20the%20Potential%20Recognition%20of%20Wet-Target%20Craters%20on%20Mars&rft.jtitle=Astrobiology&rft.au=Veneranda,%20Marco&rft.date=2020-03&rft.volume=20&rft.issue=3&rft.spage=349&rft.epage=363&rft.pages=349-363&rft.issn=1531-1074&rft.eissn=1557-8070&rft_id=info:doi/10.1089/ast.2019.2095&rft_dat=%3Cproquest_hal_p%3E2346294762%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2369911742&rft_id=info:pmid/31985268&rfr_iscdi=true