Global helium abundance measurements in the solar corona

Solar abundances have been historically assumed to be representative of cosmic abundances. However, our knowledge of the solar abundance of helium, the second most abundant element, relies mainly on models 1 and indirect measurements through helioseismic observations 2 , because actual measurements...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature astronomy 2020-12, Vol.4 (12), p.1134-1139
Hauptverfasser: Moses, John D., Antonucci, Ester, Newmark, Jeffrey, Auchère, Frédéric, Fineschi, Silvano, Romoli, Marco, Telloni, Daniele, Massone, Giuseppe, Zangrilli, Luca, Focardi, Mauro, Landini, Federico, Pancrazzi, Maurizio, Rossi, Guglielmo, Malvezzi, Andrea M., Wang, Dennis, Leclec’h, Jean-Christophe, Moalic, Jean-Pierre, Rouesnel, Frédéric, Abbo, Lucia, Canou, Aurélien, Barbey, Nicolas, Guennou, Chloé, Laming, John M., Lemen, James, Wuelser, Jean-Pierre, Kohl, John L., Gardner, Lawrence D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1139
container_issue 12
container_start_page 1134
container_title Nature astronomy
container_volume 4
creator Moses, John D.
Antonucci, Ester
Newmark, Jeffrey
Auchère, Frédéric
Fineschi, Silvano
Romoli, Marco
Telloni, Daniele
Massone, Giuseppe
Zangrilli, Luca
Focardi, Mauro
Landini, Federico
Pancrazzi, Maurizio
Rossi, Guglielmo
Malvezzi, Andrea M.
Wang, Dennis
Leclec’h, Jean-Christophe
Moalic, Jean-Pierre
Rouesnel, Frédéric
Abbo, Lucia
Canou, Aurélien
Barbey, Nicolas
Guennou, Chloé
Laming, John M.
Lemen, James
Wuelser, Jean-Pierre
Kohl, John L.
Gardner, Lawrence D.
description Solar abundances have been historically assumed to be representative of cosmic abundances. However, our knowledge of the solar abundance of helium, the second most abundant element, relies mainly on models 1 and indirect measurements through helioseismic observations 2 , because actual measurements of helium in the solar atmosphere are very scarce. Helium cannot be directly measured in the photosphere because of its high first ionization potential, and measurements of its abundance in the inner corona have been sporadic 3 , 4 . In this Letter, we present simultaneous global images of the helium (out to a heliocentric distance of 3 R ⊙ (solar radii)) and hydrogen emission in the solar corona during the minimum of solar activity of cycle 23 and directly derive the helium abundance in the streamer region and surrounding corona (out to 2.2 R ⊙ ). The morphology of the He + corona is markedly different from that of the H corona, owing to significant spatial variations in helium abundance. The observations show that the helium abundance is shaped according to and modulated by the structure of the large-scale coronal magnetic field and that helium is almost completely depleted in the equatorial regions during the quiet Sun. This measurement provides a trace back to the coronal source of the anomalously slow solar wind observed in the heliosphere at the Sun–Earth Lagrangian point L1 in 2009, during the exceptionally long-lasting minimum of solar activity cycle 23. Global images of helium and hydrogen emission are used to directly derive the helium abundance out to 2.2 R ⊙ . The helium abundance is shaped by the large-scale coronal magnetic field. Helium is almost completely depleted near the equator in the quiet Sun.
doi_str_mv 10.1038/s41550-020-1156-6
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04480980v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473210929</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-2afef453ad61ec2107653c8d559ddf43e1be9e88ba4f0fe13708a663c7a6c3373</originalsourceid><addsrcrecordid>eNp1kEFLwzAUx4MoOOY-gLeCJw_Vl7wmTY9j6CYMvOg5pOmr6-iambSC396OinrxlEf4_f_v8WPsmsMdB9T3MeNSQgoCUs6lStUZmwks8hRRqfM_8yVbxLgHAFFIjpzPmF63vrRtsqO2GQ6JLYeusp2j5EA2DoEO1PUxabqk31ESfWtD4nzwnb1iF7VtIy2-3zl7fXx4WW3S7fP6abXcpg4l9KmwNdWZRFspTk5wyJVEpyspi6qqMyReUkFalzaroSaOOWirFLrcKoeY45zdTr0725pjaA42fBpvG7NZbs3pD7JMQ6Hhg4_szcQeg38fKPZm74fQjecZkeU4bi9EMVJ8olzwMQaqf2o5mJNPM_k0o09z8mnUmBFTJo5s90bht_n_0BdebHX-</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473210929</pqid></control><display><type>article</type><title>Global helium abundance measurements in the solar corona</title><source>Alma/SFX Local Collection</source><creator>Moses, John D. ; Antonucci, Ester ; Newmark, Jeffrey ; Auchère, Frédéric ; Fineschi, Silvano ; Romoli, Marco ; Telloni, Daniele ; Massone, Giuseppe ; Zangrilli, Luca ; Focardi, Mauro ; Landini, Federico ; Pancrazzi, Maurizio ; Rossi, Guglielmo ; Malvezzi, Andrea M. ; Wang, Dennis ; Leclec’h, Jean-Christophe ; Moalic, Jean-Pierre ; Rouesnel, Frédéric ; Abbo, Lucia ; Canou, Aurélien ; Barbey, Nicolas ; Guennou, Chloé ; Laming, John M. ; Lemen, James ; Wuelser, Jean-Pierre ; Kohl, John L. ; Gardner, Lawrence D.</creator><creatorcontrib>Moses, John D. ; Antonucci, Ester ; Newmark, Jeffrey ; Auchère, Frédéric ; Fineschi, Silvano ; Romoli, Marco ; Telloni, Daniele ; Massone, Giuseppe ; Zangrilli, Luca ; Focardi, Mauro ; Landini, Federico ; Pancrazzi, Maurizio ; Rossi, Guglielmo ; Malvezzi, Andrea M. ; Wang, Dennis ; Leclec’h, Jean-Christophe ; Moalic, Jean-Pierre ; Rouesnel, Frédéric ; Abbo, Lucia ; Canou, Aurélien ; Barbey, Nicolas ; Guennou, Chloé ; Laming, John M. ; Lemen, James ; Wuelser, Jean-Pierre ; Kohl, John L. ; Gardner, Lawrence D.</creatorcontrib><description>Solar abundances have been historically assumed to be representative of cosmic abundances. However, our knowledge of the solar abundance of helium, the second most abundant element, relies mainly on models 1 and indirect measurements through helioseismic observations 2 , because actual measurements of helium in the solar atmosphere are very scarce. Helium cannot be directly measured in the photosphere because of its high first ionization potential, and measurements of its abundance in the inner corona have been sporadic 3 , 4 . In this Letter, we present simultaneous global images of the helium (out to a heliocentric distance of 3 R ⊙ (solar radii)) and hydrogen emission in the solar corona during the minimum of solar activity of cycle 23 and directly derive the helium abundance in the streamer region and surrounding corona (out to 2.2 R ⊙ ). The morphology of the He + corona is markedly different from that of the H corona, owing to significant spatial variations in helium abundance. The observations show that the helium abundance is shaped according to and modulated by the structure of the large-scale coronal magnetic field and that helium is almost completely depleted in the equatorial regions during the quiet Sun. This measurement provides a trace back to the coronal source of the anomalously slow solar wind observed in the heliosphere at the Sun–Earth Lagrangian point L1 in 2009, during the exceptionally long-lasting minimum of solar activity cycle 23. Global images of helium and hydrogen emission are used to directly derive the helium abundance out to 2.2 R ⊙ . The helium abundance is shaped by the large-scale coronal magnetic field. Helium is almost completely depleted near the equator in the quiet Sun.</description><identifier>ISSN: 2397-3366</identifier><identifier>EISSN: 2397-3366</identifier><identifier>DOI: 10.1038/s41550-020-1156-6</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/33/34/2810 ; 639/33/34/867 ; 639/33/525/870 ; Astronomy ; Astrophysics ; Astrophysics and Cosmology ; Corona ; Emissions ; Equator ; Helium ; Ionization ; Letter ; Magnetic fields ; Physics ; Physics and Astronomy ; Solar activity ; Solar and Stellar Astrophysics ; Solar physics</subject><ispartof>Nature astronomy, 2020-12, Vol.4 (12), p.1134-1139</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-2afef453ad61ec2107653c8d559ddf43e1be9e88ba4f0fe13708a663c7a6c3373</citedby><cites>FETCH-LOGICAL-c350t-2afef453ad61ec2107653c8d559ddf43e1be9e88ba4f0fe13708a663c7a6c3373</cites><orcidid>0000-0003-0972-7022 ; 0000-0001-8235-2242 ; 0000-0002-3789-2482 ; 0000-0002-4013-6784 ; 0000-0002-3362-7040 ; 0000-0001-9921-1198</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04480980$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Moses, John D.</creatorcontrib><creatorcontrib>Antonucci, Ester</creatorcontrib><creatorcontrib>Newmark, Jeffrey</creatorcontrib><creatorcontrib>Auchère, Frédéric</creatorcontrib><creatorcontrib>Fineschi, Silvano</creatorcontrib><creatorcontrib>Romoli, Marco</creatorcontrib><creatorcontrib>Telloni, Daniele</creatorcontrib><creatorcontrib>Massone, Giuseppe</creatorcontrib><creatorcontrib>Zangrilli, Luca</creatorcontrib><creatorcontrib>Focardi, Mauro</creatorcontrib><creatorcontrib>Landini, Federico</creatorcontrib><creatorcontrib>Pancrazzi, Maurizio</creatorcontrib><creatorcontrib>Rossi, Guglielmo</creatorcontrib><creatorcontrib>Malvezzi, Andrea M.</creatorcontrib><creatorcontrib>Wang, Dennis</creatorcontrib><creatorcontrib>Leclec’h, Jean-Christophe</creatorcontrib><creatorcontrib>Moalic, Jean-Pierre</creatorcontrib><creatorcontrib>Rouesnel, Frédéric</creatorcontrib><creatorcontrib>Abbo, Lucia</creatorcontrib><creatorcontrib>Canou, Aurélien</creatorcontrib><creatorcontrib>Barbey, Nicolas</creatorcontrib><creatorcontrib>Guennou, Chloé</creatorcontrib><creatorcontrib>Laming, John M.</creatorcontrib><creatorcontrib>Lemen, James</creatorcontrib><creatorcontrib>Wuelser, Jean-Pierre</creatorcontrib><creatorcontrib>Kohl, John L.</creatorcontrib><creatorcontrib>Gardner, Lawrence D.</creatorcontrib><title>Global helium abundance measurements in the solar corona</title><title>Nature astronomy</title><addtitle>Nat Astron</addtitle><description>Solar abundances have been historically assumed to be representative of cosmic abundances. However, our knowledge of the solar abundance of helium, the second most abundant element, relies mainly on models 1 and indirect measurements through helioseismic observations 2 , because actual measurements of helium in the solar atmosphere are very scarce. Helium cannot be directly measured in the photosphere because of its high first ionization potential, and measurements of its abundance in the inner corona have been sporadic 3 , 4 . In this Letter, we present simultaneous global images of the helium (out to a heliocentric distance of 3 R ⊙ (solar radii)) and hydrogen emission in the solar corona during the minimum of solar activity of cycle 23 and directly derive the helium abundance in the streamer region and surrounding corona (out to 2.2 R ⊙ ). The morphology of the He + corona is markedly different from that of the H corona, owing to significant spatial variations in helium abundance. The observations show that the helium abundance is shaped according to and modulated by the structure of the large-scale coronal magnetic field and that helium is almost completely depleted in the equatorial regions during the quiet Sun. This measurement provides a trace back to the coronal source of the anomalously slow solar wind observed in the heliosphere at the Sun–Earth Lagrangian point L1 in 2009, during the exceptionally long-lasting minimum of solar activity cycle 23. Global images of helium and hydrogen emission are used to directly derive the helium abundance out to 2.2 R ⊙ . The helium abundance is shaped by the large-scale coronal magnetic field. Helium is almost completely depleted near the equator in the quiet Sun.</description><subject>639/33/34/2810</subject><subject>639/33/34/867</subject><subject>639/33/525/870</subject><subject>Astronomy</subject><subject>Astrophysics</subject><subject>Astrophysics and Cosmology</subject><subject>Corona</subject><subject>Emissions</subject><subject>Equator</subject><subject>Helium</subject><subject>Ionization</subject><subject>Letter</subject><subject>Magnetic fields</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Solar activity</subject><subject>Solar and Stellar Astrophysics</subject><subject>Solar physics</subject><issn>2397-3366</issn><issn>2397-3366</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kEFLwzAUx4MoOOY-gLeCJw_Vl7wmTY9j6CYMvOg5pOmr6-iambSC396OinrxlEf4_f_v8WPsmsMdB9T3MeNSQgoCUs6lStUZmwks8hRRqfM_8yVbxLgHAFFIjpzPmF63vrRtsqO2GQ6JLYeusp2j5EA2DoEO1PUxabqk31ESfWtD4nzwnb1iF7VtIy2-3zl7fXx4WW3S7fP6abXcpg4l9KmwNdWZRFspTk5wyJVEpyspi6qqMyReUkFalzaroSaOOWirFLrcKoeY45zdTr0725pjaA42fBpvG7NZbs3pD7JMQ6Hhg4_szcQeg38fKPZm74fQjecZkeU4bi9EMVJ8olzwMQaqf2o5mJNPM_k0o09z8mnUmBFTJo5s90bht_n_0BdebHX-</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Moses, John D.</creator><creator>Antonucci, Ester</creator><creator>Newmark, Jeffrey</creator><creator>Auchère, Frédéric</creator><creator>Fineschi, Silvano</creator><creator>Romoli, Marco</creator><creator>Telloni, Daniele</creator><creator>Massone, Giuseppe</creator><creator>Zangrilli, Luca</creator><creator>Focardi, Mauro</creator><creator>Landini, Federico</creator><creator>Pancrazzi, Maurizio</creator><creator>Rossi, Guglielmo</creator><creator>Malvezzi, Andrea M.</creator><creator>Wang, Dennis</creator><creator>Leclec’h, Jean-Christophe</creator><creator>Moalic, Jean-Pierre</creator><creator>Rouesnel, Frédéric</creator><creator>Abbo, Lucia</creator><creator>Canou, Aurélien</creator><creator>Barbey, Nicolas</creator><creator>Guennou, Chloé</creator><creator>Laming, John M.</creator><creator>Lemen, James</creator><creator>Wuelser, Jean-Pierre</creator><creator>Kohl, John L.</creator><creator>Gardner, Lawrence D.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-0972-7022</orcidid><orcidid>https://orcid.org/0000-0001-8235-2242</orcidid><orcidid>https://orcid.org/0000-0002-3789-2482</orcidid><orcidid>https://orcid.org/0000-0002-4013-6784</orcidid><orcidid>https://orcid.org/0000-0002-3362-7040</orcidid><orcidid>https://orcid.org/0000-0001-9921-1198</orcidid></search><sort><creationdate>20201201</creationdate><title>Global helium abundance measurements in the solar corona</title><author>Moses, John D. ; Antonucci, Ester ; Newmark, Jeffrey ; Auchère, Frédéric ; Fineschi, Silvano ; Romoli, Marco ; Telloni, Daniele ; Massone, Giuseppe ; Zangrilli, Luca ; Focardi, Mauro ; Landini, Federico ; Pancrazzi, Maurizio ; Rossi, Guglielmo ; Malvezzi, Andrea M. ; Wang, Dennis ; Leclec’h, Jean-Christophe ; Moalic, Jean-Pierre ; Rouesnel, Frédéric ; Abbo, Lucia ; Canou, Aurélien ; Barbey, Nicolas ; Guennou, Chloé ; Laming, John M. ; Lemen, James ; Wuelser, Jean-Pierre ; Kohl, John L. ; Gardner, Lawrence D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-2afef453ad61ec2107653c8d559ddf43e1be9e88ba4f0fe13708a663c7a6c3373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/33/34/2810</topic><topic>639/33/34/867</topic><topic>639/33/525/870</topic><topic>Astronomy</topic><topic>Astrophysics</topic><topic>Astrophysics and Cosmology</topic><topic>Corona</topic><topic>Emissions</topic><topic>Equator</topic><topic>Helium</topic><topic>Ionization</topic><topic>Letter</topic><topic>Magnetic fields</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Solar activity</topic><topic>Solar and Stellar Astrophysics</topic><topic>Solar physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moses, John D.</creatorcontrib><creatorcontrib>Antonucci, Ester</creatorcontrib><creatorcontrib>Newmark, Jeffrey</creatorcontrib><creatorcontrib>Auchère, Frédéric</creatorcontrib><creatorcontrib>Fineschi, Silvano</creatorcontrib><creatorcontrib>Romoli, Marco</creatorcontrib><creatorcontrib>Telloni, Daniele</creatorcontrib><creatorcontrib>Massone, Giuseppe</creatorcontrib><creatorcontrib>Zangrilli, Luca</creatorcontrib><creatorcontrib>Focardi, Mauro</creatorcontrib><creatorcontrib>Landini, Federico</creatorcontrib><creatorcontrib>Pancrazzi, Maurizio</creatorcontrib><creatorcontrib>Rossi, Guglielmo</creatorcontrib><creatorcontrib>Malvezzi, Andrea M.</creatorcontrib><creatorcontrib>Wang, Dennis</creatorcontrib><creatorcontrib>Leclec’h, Jean-Christophe</creatorcontrib><creatorcontrib>Moalic, Jean-Pierre</creatorcontrib><creatorcontrib>Rouesnel, Frédéric</creatorcontrib><creatorcontrib>Abbo, Lucia</creatorcontrib><creatorcontrib>Canou, Aurélien</creatorcontrib><creatorcontrib>Barbey, Nicolas</creatorcontrib><creatorcontrib>Guennou, Chloé</creatorcontrib><creatorcontrib>Laming, John M.</creatorcontrib><creatorcontrib>Lemen, James</creatorcontrib><creatorcontrib>Wuelser, Jean-Pierre</creatorcontrib><creatorcontrib>Kohl, John L.</creatorcontrib><creatorcontrib>Gardner, Lawrence D.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Nature astronomy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moses, John D.</au><au>Antonucci, Ester</au><au>Newmark, Jeffrey</au><au>Auchère, Frédéric</au><au>Fineschi, Silvano</au><au>Romoli, Marco</au><au>Telloni, Daniele</au><au>Massone, Giuseppe</au><au>Zangrilli, Luca</au><au>Focardi, Mauro</au><au>Landini, Federico</au><au>Pancrazzi, Maurizio</au><au>Rossi, Guglielmo</au><au>Malvezzi, Andrea M.</au><au>Wang, Dennis</au><au>Leclec’h, Jean-Christophe</au><au>Moalic, Jean-Pierre</au><au>Rouesnel, Frédéric</au><au>Abbo, Lucia</au><au>Canou, Aurélien</au><au>Barbey, Nicolas</au><au>Guennou, Chloé</au><au>Laming, John M.</au><au>Lemen, James</au><au>Wuelser, Jean-Pierre</au><au>Kohl, John L.</au><au>Gardner, Lawrence D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global helium abundance measurements in the solar corona</atitle><jtitle>Nature astronomy</jtitle><stitle>Nat Astron</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>4</volume><issue>12</issue><spage>1134</spage><epage>1139</epage><pages>1134-1139</pages><issn>2397-3366</issn><eissn>2397-3366</eissn><abstract>Solar abundances have been historically assumed to be representative of cosmic abundances. However, our knowledge of the solar abundance of helium, the second most abundant element, relies mainly on models 1 and indirect measurements through helioseismic observations 2 , because actual measurements of helium in the solar atmosphere are very scarce. Helium cannot be directly measured in the photosphere because of its high first ionization potential, and measurements of its abundance in the inner corona have been sporadic 3 , 4 . In this Letter, we present simultaneous global images of the helium (out to a heliocentric distance of 3 R ⊙ (solar radii)) and hydrogen emission in the solar corona during the minimum of solar activity of cycle 23 and directly derive the helium abundance in the streamer region and surrounding corona (out to 2.2 R ⊙ ). The morphology of the He + corona is markedly different from that of the H corona, owing to significant spatial variations in helium abundance. The observations show that the helium abundance is shaped according to and modulated by the structure of the large-scale coronal magnetic field and that helium is almost completely depleted in the equatorial regions during the quiet Sun. This measurement provides a trace back to the coronal source of the anomalously slow solar wind observed in the heliosphere at the Sun–Earth Lagrangian point L1 in 2009, during the exceptionally long-lasting minimum of solar activity cycle 23. Global images of helium and hydrogen emission are used to directly derive the helium abundance out to 2.2 R ⊙ . The helium abundance is shaped by the large-scale coronal magnetic field. Helium is almost completely depleted near the equator in the quiet Sun.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41550-020-1156-6</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-0972-7022</orcidid><orcidid>https://orcid.org/0000-0001-8235-2242</orcidid><orcidid>https://orcid.org/0000-0002-3789-2482</orcidid><orcidid>https://orcid.org/0000-0002-4013-6784</orcidid><orcidid>https://orcid.org/0000-0002-3362-7040</orcidid><orcidid>https://orcid.org/0000-0001-9921-1198</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2397-3366
ispartof Nature astronomy, 2020-12, Vol.4 (12), p.1134-1139
issn 2397-3366
2397-3366
language eng
recordid cdi_hal_primary_oai_HAL_hal_04480980v1
source Alma/SFX Local Collection
subjects 639/33/34/2810
639/33/34/867
639/33/525/870
Astronomy
Astrophysics
Astrophysics and Cosmology
Corona
Emissions
Equator
Helium
Ionization
Letter
Magnetic fields
Physics
Physics and Astronomy
Solar activity
Solar and Stellar Astrophysics
Solar physics
title Global helium abundance measurements in the solar corona
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T21%3A15%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20helium%20abundance%20measurements%20in%20the%20solar%20corona&rft.jtitle=Nature%20astronomy&rft.au=Moses,%20John%20D.&rft.date=2020-12-01&rft.volume=4&rft.issue=12&rft.spage=1134&rft.epage=1139&rft.pages=1134-1139&rft.issn=2397-3366&rft.eissn=2397-3366&rft_id=info:doi/10.1038/s41550-020-1156-6&rft_dat=%3Cproquest_hal_p%3E2473210929%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473210929&rft_id=info:pmid/&rfr_iscdi=true