Global helium abundance measurements in the solar corona
Solar abundances have been historically assumed to be representative of cosmic abundances. However, our knowledge of the solar abundance of helium, the second most abundant element, relies mainly on models 1 and indirect measurements through helioseismic observations 2 , because actual measurements...
Gespeichert in:
Veröffentlicht in: | Nature astronomy 2020-12, Vol.4 (12), p.1134-1139 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1139 |
---|---|
container_issue | 12 |
container_start_page | 1134 |
container_title | Nature astronomy |
container_volume | 4 |
creator | Moses, John D. Antonucci, Ester Newmark, Jeffrey Auchère, Frédéric Fineschi, Silvano Romoli, Marco Telloni, Daniele Massone, Giuseppe Zangrilli, Luca Focardi, Mauro Landini, Federico Pancrazzi, Maurizio Rossi, Guglielmo Malvezzi, Andrea M. Wang, Dennis Leclec’h, Jean-Christophe Moalic, Jean-Pierre Rouesnel, Frédéric Abbo, Lucia Canou, Aurélien Barbey, Nicolas Guennou, Chloé Laming, John M. Lemen, James Wuelser, Jean-Pierre Kohl, John L. Gardner, Lawrence D. |
description | Solar abundances have been historically assumed to be representative of cosmic abundances. However, our knowledge of the solar abundance of helium, the second most abundant element, relies mainly on models
1
and indirect measurements through helioseismic observations
2
, because actual measurements of helium in the solar atmosphere are very scarce. Helium cannot be directly measured in the photosphere because of its high first ionization potential, and measurements of its abundance in the inner corona have been sporadic
3
,
4
. In this Letter, we present simultaneous global images of the helium (out to a heliocentric distance of 3
R
⊙
(solar radii)) and hydrogen emission in the solar corona during the minimum of solar activity of cycle 23 and directly derive the helium abundance in the streamer region and surrounding corona (out to 2.2
R
⊙
). The morphology of the He
+
corona is markedly different from that of the H corona, owing to significant spatial variations in helium abundance. The observations show that the helium abundance is shaped according to and modulated by the structure of the large-scale coronal magnetic field and that helium is almost completely depleted in the equatorial regions during the quiet Sun. This measurement provides a trace back to the coronal source of the anomalously slow solar wind observed in the heliosphere at the Sun–Earth Lagrangian point L1 in 2009, during the exceptionally long-lasting minimum of solar activity cycle 23.
Global images of helium and hydrogen emission are used to directly derive the helium abundance out to 2.2
R
⊙
. The helium abundance is shaped by the large-scale coronal magnetic field. Helium is almost completely depleted near the equator in the quiet Sun. |
doi_str_mv | 10.1038/s41550-020-1156-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04480980v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473210929</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-2afef453ad61ec2107653c8d559ddf43e1be9e88ba4f0fe13708a663c7a6c3373</originalsourceid><addsrcrecordid>eNp1kEFLwzAUx4MoOOY-gLeCJw_Vl7wmTY9j6CYMvOg5pOmr6-iambSC396OinrxlEf4_f_v8WPsmsMdB9T3MeNSQgoCUs6lStUZmwks8hRRqfM_8yVbxLgHAFFIjpzPmF63vrRtsqO2GQ6JLYeusp2j5EA2DoEO1PUxabqk31ESfWtD4nzwnb1iF7VtIy2-3zl7fXx4WW3S7fP6abXcpg4l9KmwNdWZRFspTk5wyJVEpyspi6qqMyReUkFalzaroSaOOWirFLrcKoeY45zdTr0725pjaA42fBpvG7NZbs3pD7JMQ6Hhg4_szcQeg38fKPZm74fQjecZkeU4bi9EMVJ8olzwMQaqf2o5mJNPM_k0o09z8mnUmBFTJo5s90bht_n_0BdebHX-</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473210929</pqid></control><display><type>article</type><title>Global helium abundance measurements in the solar corona</title><source>Alma/SFX Local Collection</source><creator>Moses, John D. ; Antonucci, Ester ; Newmark, Jeffrey ; Auchère, Frédéric ; Fineschi, Silvano ; Romoli, Marco ; Telloni, Daniele ; Massone, Giuseppe ; Zangrilli, Luca ; Focardi, Mauro ; Landini, Federico ; Pancrazzi, Maurizio ; Rossi, Guglielmo ; Malvezzi, Andrea M. ; Wang, Dennis ; Leclec’h, Jean-Christophe ; Moalic, Jean-Pierre ; Rouesnel, Frédéric ; Abbo, Lucia ; Canou, Aurélien ; Barbey, Nicolas ; Guennou, Chloé ; Laming, John M. ; Lemen, James ; Wuelser, Jean-Pierre ; Kohl, John L. ; Gardner, Lawrence D.</creator><creatorcontrib>Moses, John D. ; Antonucci, Ester ; Newmark, Jeffrey ; Auchère, Frédéric ; Fineschi, Silvano ; Romoli, Marco ; Telloni, Daniele ; Massone, Giuseppe ; Zangrilli, Luca ; Focardi, Mauro ; Landini, Federico ; Pancrazzi, Maurizio ; Rossi, Guglielmo ; Malvezzi, Andrea M. ; Wang, Dennis ; Leclec’h, Jean-Christophe ; Moalic, Jean-Pierre ; Rouesnel, Frédéric ; Abbo, Lucia ; Canou, Aurélien ; Barbey, Nicolas ; Guennou, Chloé ; Laming, John M. ; Lemen, James ; Wuelser, Jean-Pierre ; Kohl, John L. ; Gardner, Lawrence D.</creatorcontrib><description>Solar abundances have been historically assumed to be representative of cosmic abundances. However, our knowledge of the solar abundance of helium, the second most abundant element, relies mainly on models
1
and indirect measurements through helioseismic observations
2
, because actual measurements of helium in the solar atmosphere are very scarce. Helium cannot be directly measured in the photosphere because of its high first ionization potential, and measurements of its abundance in the inner corona have been sporadic
3
,
4
. In this Letter, we present simultaneous global images of the helium (out to a heliocentric distance of 3
R
⊙
(solar radii)) and hydrogen emission in the solar corona during the minimum of solar activity of cycle 23 and directly derive the helium abundance in the streamer region and surrounding corona (out to 2.2
R
⊙
). The morphology of the He
+
corona is markedly different from that of the H corona, owing to significant spatial variations in helium abundance. The observations show that the helium abundance is shaped according to and modulated by the structure of the large-scale coronal magnetic field and that helium is almost completely depleted in the equatorial regions during the quiet Sun. This measurement provides a trace back to the coronal source of the anomalously slow solar wind observed in the heliosphere at the Sun–Earth Lagrangian point L1 in 2009, during the exceptionally long-lasting minimum of solar activity cycle 23.
Global images of helium and hydrogen emission are used to directly derive the helium abundance out to 2.2
R
⊙
. The helium abundance is shaped by the large-scale coronal magnetic field. Helium is almost completely depleted near the equator in the quiet Sun.</description><identifier>ISSN: 2397-3366</identifier><identifier>EISSN: 2397-3366</identifier><identifier>DOI: 10.1038/s41550-020-1156-6</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/33/34/2810 ; 639/33/34/867 ; 639/33/525/870 ; Astronomy ; Astrophysics ; Astrophysics and Cosmology ; Corona ; Emissions ; Equator ; Helium ; Ionization ; Letter ; Magnetic fields ; Physics ; Physics and Astronomy ; Solar activity ; Solar and Stellar Astrophysics ; Solar physics</subject><ispartof>Nature astronomy, 2020-12, Vol.4 (12), p.1134-1139</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-2afef453ad61ec2107653c8d559ddf43e1be9e88ba4f0fe13708a663c7a6c3373</citedby><cites>FETCH-LOGICAL-c350t-2afef453ad61ec2107653c8d559ddf43e1be9e88ba4f0fe13708a663c7a6c3373</cites><orcidid>0000-0003-0972-7022 ; 0000-0001-8235-2242 ; 0000-0002-3789-2482 ; 0000-0002-4013-6784 ; 0000-0002-3362-7040 ; 0000-0001-9921-1198</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04480980$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Moses, John D.</creatorcontrib><creatorcontrib>Antonucci, Ester</creatorcontrib><creatorcontrib>Newmark, Jeffrey</creatorcontrib><creatorcontrib>Auchère, Frédéric</creatorcontrib><creatorcontrib>Fineschi, Silvano</creatorcontrib><creatorcontrib>Romoli, Marco</creatorcontrib><creatorcontrib>Telloni, Daniele</creatorcontrib><creatorcontrib>Massone, Giuseppe</creatorcontrib><creatorcontrib>Zangrilli, Luca</creatorcontrib><creatorcontrib>Focardi, Mauro</creatorcontrib><creatorcontrib>Landini, Federico</creatorcontrib><creatorcontrib>Pancrazzi, Maurizio</creatorcontrib><creatorcontrib>Rossi, Guglielmo</creatorcontrib><creatorcontrib>Malvezzi, Andrea M.</creatorcontrib><creatorcontrib>Wang, Dennis</creatorcontrib><creatorcontrib>Leclec’h, Jean-Christophe</creatorcontrib><creatorcontrib>Moalic, Jean-Pierre</creatorcontrib><creatorcontrib>Rouesnel, Frédéric</creatorcontrib><creatorcontrib>Abbo, Lucia</creatorcontrib><creatorcontrib>Canou, Aurélien</creatorcontrib><creatorcontrib>Barbey, Nicolas</creatorcontrib><creatorcontrib>Guennou, Chloé</creatorcontrib><creatorcontrib>Laming, John M.</creatorcontrib><creatorcontrib>Lemen, James</creatorcontrib><creatorcontrib>Wuelser, Jean-Pierre</creatorcontrib><creatorcontrib>Kohl, John L.</creatorcontrib><creatorcontrib>Gardner, Lawrence D.</creatorcontrib><title>Global helium abundance measurements in the solar corona</title><title>Nature astronomy</title><addtitle>Nat Astron</addtitle><description>Solar abundances have been historically assumed to be representative of cosmic abundances. However, our knowledge of the solar abundance of helium, the second most abundant element, relies mainly on models
1
and indirect measurements through helioseismic observations
2
, because actual measurements of helium in the solar atmosphere are very scarce. Helium cannot be directly measured in the photosphere because of its high first ionization potential, and measurements of its abundance in the inner corona have been sporadic
3
,
4
. In this Letter, we present simultaneous global images of the helium (out to a heliocentric distance of 3
R
⊙
(solar radii)) and hydrogen emission in the solar corona during the minimum of solar activity of cycle 23 and directly derive the helium abundance in the streamer region and surrounding corona (out to 2.2
R
⊙
). The morphology of the He
+
corona is markedly different from that of the H corona, owing to significant spatial variations in helium abundance. The observations show that the helium abundance is shaped according to and modulated by the structure of the large-scale coronal magnetic field and that helium is almost completely depleted in the equatorial regions during the quiet Sun. This measurement provides a trace back to the coronal source of the anomalously slow solar wind observed in the heliosphere at the Sun–Earth Lagrangian point L1 in 2009, during the exceptionally long-lasting minimum of solar activity cycle 23.
Global images of helium and hydrogen emission are used to directly derive the helium abundance out to 2.2
R
⊙
. The helium abundance is shaped by the large-scale coronal magnetic field. Helium is almost completely depleted near the equator in the quiet Sun.</description><subject>639/33/34/2810</subject><subject>639/33/34/867</subject><subject>639/33/525/870</subject><subject>Astronomy</subject><subject>Astrophysics</subject><subject>Astrophysics and Cosmology</subject><subject>Corona</subject><subject>Emissions</subject><subject>Equator</subject><subject>Helium</subject><subject>Ionization</subject><subject>Letter</subject><subject>Magnetic fields</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Solar activity</subject><subject>Solar and Stellar Astrophysics</subject><subject>Solar physics</subject><issn>2397-3366</issn><issn>2397-3366</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kEFLwzAUx4MoOOY-gLeCJw_Vl7wmTY9j6CYMvOg5pOmr6-iambSC396OinrxlEf4_f_v8WPsmsMdB9T3MeNSQgoCUs6lStUZmwks8hRRqfM_8yVbxLgHAFFIjpzPmF63vrRtsqO2GQ6JLYeusp2j5EA2DoEO1PUxabqk31ESfWtD4nzwnb1iF7VtIy2-3zl7fXx4WW3S7fP6abXcpg4l9KmwNdWZRFspTk5wyJVEpyspi6qqMyReUkFalzaroSaOOWirFLrcKoeY45zdTr0725pjaA42fBpvG7NZbs3pD7JMQ6Hhg4_szcQeg38fKPZm74fQjecZkeU4bi9EMVJ8olzwMQaqf2o5mJNPM_k0o09z8mnUmBFTJo5s90bht_n_0BdebHX-</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Moses, John D.</creator><creator>Antonucci, Ester</creator><creator>Newmark, Jeffrey</creator><creator>Auchère, Frédéric</creator><creator>Fineschi, Silvano</creator><creator>Romoli, Marco</creator><creator>Telloni, Daniele</creator><creator>Massone, Giuseppe</creator><creator>Zangrilli, Luca</creator><creator>Focardi, Mauro</creator><creator>Landini, Federico</creator><creator>Pancrazzi, Maurizio</creator><creator>Rossi, Guglielmo</creator><creator>Malvezzi, Andrea M.</creator><creator>Wang, Dennis</creator><creator>Leclec’h, Jean-Christophe</creator><creator>Moalic, Jean-Pierre</creator><creator>Rouesnel, Frédéric</creator><creator>Abbo, Lucia</creator><creator>Canou, Aurélien</creator><creator>Barbey, Nicolas</creator><creator>Guennou, Chloé</creator><creator>Laming, John M.</creator><creator>Lemen, James</creator><creator>Wuelser, Jean-Pierre</creator><creator>Kohl, John L.</creator><creator>Gardner, Lawrence D.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-0972-7022</orcidid><orcidid>https://orcid.org/0000-0001-8235-2242</orcidid><orcidid>https://orcid.org/0000-0002-3789-2482</orcidid><orcidid>https://orcid.org/0000-0002-4013-6784</orcidid><orcidid>https://orcid.org/0000-0002-3362-7040</orcidid><orcidid>https://orcid.org/0000-0001-9921-1198</orcidid></search><sort><creationdate>20201201</creationdate><title>Global helium abundance measurements in the solar corona</title><author>Moses, John D. ; Antonucci, Ester ; Newmark, Jeffrey ; Auchère, Frédéric ; Fineschi, Silvano ; Romoli, Marco ; Telloni, Daniele ; Massone, Giuseppe ; Zangrilli, Luca ; Focardi, Mauro ; Landini, Federico ; Pancrazzi, Maurizio ; Rossi, Guglielmo ; Malvezzi, Andrea M. ; Wang, Dennis ; Leclec’h, Jean-Christophe ; Moalic, Jean-Pierre ; Rouesnel, Frédéric ; Abbo, Lucia ; Canou, Aurélien ; Barbey, Nicolas ; Guennou, Chloé ; Laming, John M. ; Lemen, James ; Wuelser, Jean-Pierre ; Kohl, John L. ; Gardner, Lawrence D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-2afef453ad61ec2107653c8d559ddf43e1be9e88ba4f0fe13708a663c7a6c3373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/33/34/2810</topic><topic>639/33/34/867</topic><topic>639/33/525/870</topic><topic>Astronomy</topic><topic>Astrophysics</topic><topic>Astrophysics and Cosmology</topic><topic>Corona</topic><topic>Emissions</topic><topic>Equator</topic><topic>Helium</topic><topic>Ionization</topic><topic>Letter</topic><topic>Magnetic fields</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Solar activity</topic><topic>Solar and Stellar Astrophysics</topic><topic>Solar physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moses, John D.</creatorcontrib><creatorcontrib>Antonucci, Ester</creatorcontrib><creatorcontrib>Newmark, Jeffrey</creatorcontrib><creatorcontrib>Auchère, Frédéric</creatorcontrib><creatorcontrib>Fineschi, Silvano</creatorcontrib><creatorcontrib>Romoli, Marco</creatorcontrib><creatorcontrib>Telloni, Daniele</creatorcontrib><creatorcontrib>Massone, Giuseppe</creatorcontrib><creatorcontrib>Zangrilli, Luca</creatorcontrib><creatorcontrib>Focardi, Mauro</creatorcontrib><creatorcontrib>Landini, Federico</creatorcontrib><creatorcontrib>Pancrazzi, Maurizio</creatorcontrib><creatorcontrib>Rossi, Guglielmo</creatorcontrib><creatorcontrib>Malvezzi, Andrea M.</creatorcontrib><creatorcontrib>Wang, Dennis</creatorcontrib><creatorcontrib>Leclec’h, Jean-Christophe</creatorcontrib><creatorcontrib>Moalic, Jean-Pierre</creatorcontrib><creatorcontrib>Rouesnel, Frédéric</creatorcontrib><creatorcontrib>Abbo, Lucia</creatorcontrib><creatorcontrib>Canou, Aurélien</creatorcontrib><creatorcontrib>Barbey, Nicolas</creatorcontrib><creatorcontrib>Guennou, Chloé</creatorcontrib><creatorcontrib>Laming, John M.</creatorcontrib><creatorcontrib>Lemen, James</creatorcontrib><creatorcontrib>Wuelser, Jean-Pierre</creatorcontrib><creatorcontrib>Kohl, John L.</creatorcontrib><creatorcontrib>Gardner, Lawrence D.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Nature astronomy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moses, John D.</au><au>Antonucci, Ester</au><au>Newmark, Jeffrey</au><au>Auchère, Frédéric</au><au>Fineschi, Silvano</au><au>Romoli, Marco</au><au>Telloni, Daniele</au><au>Massone, Giuseppe</au><au>Zangrilli, Luca</au><au>Focardi, Mauro</au><au>Landini, Federico</au><au>Pancrazzi, Maurizio</au><au>Rossi, Guglielmo</au><au>Malvezzi, Andrea M.</au><au>Wang, Dennis</au><au>Leclec’h, Jean-Christophe</au><au>Moalic, Jean-Pierre</au><au>Rouesnel, Frédéric</au><au>Abbo, Lucia</au><au>Canou, Aurélien</au><au>Barbey, Nicolas</au><au>Guennou, Chloé</au><au>Laming, John M.</au><au>Lemen, James</au><au>Wuelser, Jean-Pierre</au><au>Kohl, John L.</au><au>Gardner, Lawrence D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global helium abundance measurements in the solar corona</atitle><jtitle>Nature astronomy</jtitle><stitle>Nat Astron</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>4</volume><issue>12</issue><spage>1134</spage><epage>1139</epage><pages>1134-1139</pages><issn>2397-3366</issn><eissn>2397-3366</eissn><abstract>Solar abundances have been historically assumed to be representative of cosmic abundances. However, our knowledge of the solar abundance of helium, the second most abundant element, relies mainly on models
1
and indirect measurements through helioseismic observations
2
, because actual measurements of helium in the solar atmosphere are very scarce. Helium cannot be directly measured in the photosphere because of its high first ionization potential, and measurements of its abundance in the inner corona have been sporadic
3
,
4
. In this Letter, we present simultaneous global images of the helium (out to a heliocentric distance of 3
R
⊙
(solar radii)) and hydrogen emission in the solar corona during the minimum of solar activity of cycle 23 and directly derive the helium abundance in the streamer region and surrounding corona (out to 2.2
R
⊙
). The morphology of the He
+
corona is markedly different from that of the H corona, owing to significant spatial variations in helium abundance. The observations show that the helium abundance is shaped according to and modulated by the structure of the large-scale coronal magnetic field and that helium is almost completely depleted in the equatorial regions during the quiet Sun. This measurement provides a trace back to the coronal source of the anomalously slow solar wind observed in the heliosphere at the Sun–Earth Lagrangian point L1 in 2009, during the exceptionally long-lasting minimum of solar activity cycle 23.
Global images of helium and hydrogen emission are used to directly derive the helium abundance out to 2.2
R
⊙
. The helium abundance is shaped by the large-scale coronal magnetic field. Helium is almost completely depleted near the equator in the quiet Sun.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41550-020-1156-6</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-0972-7022</orcidid><orcidid>https://orcid.org/0000-0001-8235-2242</orcidid><orcidid>https://orcid.org/0000-0002-3789-2482</orcidid><orcidid>https://orcid.org/0000-0002-4013-6784</orcidid><orcidid>https://orcid.org/0000-0002-3362-7040</orcidid><orcidid>https://orcid.org/0000-0001-9921-1198</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2397-3366 |
ispartof | Nature astronomy, 2020-12, Vol.4 (12), p.1134-1139 |
issn | 2397-3366 2397-3366 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04480980v1 |
source | Alma/SFX Local Collection |
subjects | 639/33/34/2810 639/33/34/867 639/33/525/870 Astronomy Astrophysics Astrophysics and Cosmology Corona Emissions Equator Helium Ionization Letter Magnetic fields Physics Physics and Astronomy Solar activity Solar and Stellar Astrophysics Solar physics |
title | Global helium abundance measurements in the solar corona |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T21%3A15%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20helium%20abundance%20measurements%20in%20the%20solar%20corona&rft.jtitle=Nature%20astronomy&rft.au=Moses,%20John%20D.&rft.date=2020-12-01&rft.volume=4&rft.issue=12&rft.spage=1134&rft.epage=1139&rft.pages=1134-1139&rft.issn=2397-3366&rft.eissn=2397-3366&rft_id=info:doi/10.1038/s41550-020-1156-6&rft_dat=%3Cproquest_hal_p%3E2473210929%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473210929&rft_id=info:pmid/&rfr_iscdi=true |