Breast cancer remotely imposes a myeloid bias on haematopoietic stem cells by reprogramming the bone marrow niche

Myeloid cell infiltration of solid tumours generally associates with poor patient prognosis and disease severity 1 – 13 . Therefore, understanding the regulation of myeloid cell differentiation during cancer is crucial to counteract their pro-tumourigenic role. Bone marrow (BM) haematopoiesis is a t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature cell biology 2023-12, Vol.25 (12), p.1736-1745
Hauptverfasser: Gerber-Ferder, Yohan, Cosgrove, Jason, Duperray-Susini, Aleria, Missolo-Koussou, Yoann, Dubois, Marine, Stepaniuk, Kateryna, Pereira-Abrantes, Manuela, Sedlik, Christine, Lameiras, Sonia, Baulande, Sylvain, Bendriss-Vermare, Nathalie, Guermonprez, Pierre, Passaro, Diana, Perié, Leïla, Piaggio, Eliane, Helft, Julie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1745
container_issue 12
container_start_page 1736
container_title Nature cell biology
container_volume 25
creator Gerber-Ferder, Yohan
Cosgrove, Jason
Duperray-Susini, Aleria
Missolo-Koussou, Yoann
Dubois, Marine
Stepaniuk, Kateryna
Pereira-Abrantes, Manuela
Sedlik, Christine
Lameiras, Sonia
Baulande, Sylvain
Bendriss-Vermare, Nathalie
Guermonprez, Pierre
Passaro, Diana
Perié, Leïla
Piaggio, Eliane
Helft, Julie
description Myeloid cell infiltration of solid tumours generally associates with poor patient prognosis and disease severity 1 – 13 . Therefore, understanding the regulation of myeloid cell differentiation during cancer is crucial to counteract their pro-tumourigenic role. Bone marrow (BM) haematopoiesis is a tightly regulated process for the production of all immune cells in accordance to tissue needs 14 . Myeloid cells differentiate during haematopoiesis from multipotent haematopoietic stem and progenitor cells (HSPCs) 15 – 17 . HSPCs can sense inflammatory signals from the periphery during infections 18 – 21 or inflammatory disorders 22 – 27 . In these settings, HSPC expansion is associated with increased myeloid differentiation 28 , 29 . During carcinogenesis, the elevation of haematopoietic growth factors supports the expansion and differentiation of committed myeloid progenitors 5 , 30 . However, it is unclear whether cancer-related inflammation also triggers demand-adapted haematopoiesis at the level of multipotent HSPCs. In the BM, HSPCs reside within the haematopoietic niche which delivers HSC maintenance and differentiation cues 31 – 35 . Mesenchymal stem cells (MSCs) are a major cellular component of the BM niche and contribute to HSC homeostasis 36 – 41 . Modifications of MSCs in systemic disorders have been associated with HSC differentiation towards myeloid cells 22 , 42 . It is unknown if MSCs are regulated in the context of solid tumours and if their myeloid supportive activity is impacted by cancer-induced systemic changes. Here, using unbiased transcriptomic analysis and in situ imaging of HSCs and the BM niche during breast cancer, we show that both HSCs and MSCs are transcriptionally and spatially modified. We demonstrate that breast tumour can distantly remodel the cellular cross-talks in the BM niche leading to increased myelopoiesis. Gerber-Ferder et al. show that non-metastatic breast tumours remotely reprogram the bone marrow stroma and instruct the myeloid differentiation of long-term haematopoietic stem cells.
doi_str_mv 10.1038/s41556-023-01291-w
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04480289v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2899553968</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-7beafa639a8a0a6a166854cb2db7b1a2a09e61008938868621519eebd15447193</originalsourceid><addsrcrecordid>eNp9kcFPHCEYxYmxqdb2H_DQkHiph6kwMAwc1dTaZJNe6pl8zH67ixmGFWbd7H8v07E26aEnCPze4308Qs45-8qZ0FdZ8qZRFatFxXhteLU_IqdctqqSqjXH0141VStMfUI-5PzIGJeSte_JidBMqFaaU_J0kxDySDsYOkw0YYgj9gfqwzZmzBRoOGAf_ZI6D5nGgW4AA4xxGz2OvqN5xEA77PtM3aHotymuE4TghzUdN0hdHJAGSCnu6eC7DX4k71bQZ_z0up6Rh7tvv27vq8XP7z9urxdVJ5kZq9YhrEAJAxoYKOBK6UZ2rl661nGogRlUnDFthNZKq5o33CC6JW-kbLkRZ-Ry9t1Ab7fJlwwHG8Hb--uFnc6YlJrV2jzzwn6Z2ZL-aYd5tMHnaSgYMO6yLZTSjJdfK-jFP-hj3KWhTDJRpmlEQQtVz1SXYs4JV28JOLNTeXYuz5by7O_y7L6IPr9a71zA5ZvkT1sFEDOQy9WwxvT37f_YvgBlEKTe</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2899553968</pqid></control><display><type>article</type><title>Breast cancer remotely imposes a myeloid bias on haematopoietic stem cells by reprogramming the bone marrow niche</title><source>MEDLINE</source><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Gerber-Ferder, Yohan ; Cosgrove, Jason ; Duperray-Susini, Aleria ; Missolo-Koussou, Yoann ; Dubois, Marine ; Stepaniuk, Kateryna ; Pereira-Abrantes, Manuela ; Sedlik, Christine ; Lameiras, Sonia ; Baulande, Sylvain ; Bendriss-Vermare, Nathalie ; Guermonprez, Pierre ; Passaro, Diana ; Perié, Leïla ; Piaggio, Eliane ; Helft, Julie</creator><creatorcontrib>Gerber-Ferder, Yohan ; Cosgrove, Jason ; Duperray-Susini, Aleria ; Missolo-Koussou, Yoann ; Dubois, Marine ; Stepaniuk, Kateryna ; Pereira-Abrantes, Manuela ; Sedlik, Christine ; Lameiras, Sonia ; Baulande, Sylvain ; Bendriss-Vermare, Nathalie ; Guermonprez, Pierre ; Passaro, Diana ; Perié, Leïla ; Piaggio, Eliane ; Helft, Julie</creatorcontrib><description>Myeloid cell infiltration of solid tumours generally associates with poor patient prognosis and disease severity 1 – 13 . Therefore, understanding the regulation of myeloid cell differentiation during cancer is crucial to counteract their pro-tumourigenic role. Bone marrow (BM) haematopoiesis is a tightly regulated process for the production of all immune cells in accordance to tissue needs 14 . Myeloid cells differentiate during haematopoiesis from multipotent haematopoietic stem and progenitor cells (HSPCs) 15 – 17 . HSPCs can sense inflammatory signals from the periphery during infections 18 – 21 or inflammatory disorders 22 – 27 . In these settings, HSPC expansion is associated with increased myeloid differentiation 28 , 29 . During carcinogenesis, the elevation of haematopoietic growth factors supports the expansion and differentiation of committed myeloid progenitors 5 , 30 . However, it is unclear whether cancer-related inflammation also triggers demand-adapted haematopoiesis at the level of multipotent HSPCs. In the BM, HSPCs reside within the haematopoietic niche which delivers HSC maintenance and differentiation cues 31 – 35 . Mesenchymal stem cells (MSCs) are a major cellular component of the BM niche and contribute to HSC homeostasis 36 – 41 . Modifications of MSCs in systemic disorders have been associated with HSC differentiation towards myeloid cells 22 , 42 . It is unknown if MSCs are regulated in the context of solid tumours and if their myeloid supportive activity is impacted by cancer-induced systemic changes. Here, using unbiased transcriptomic analysis and in situ imaging of HSCs and the BM niche during breast cancer, we show that both HSCs and MSCs are transcriptionally and spatially modified. We demonstrate that breast tumour can distantly remodel the cellular cross-talks in the BM niche leading to increased myelopoiesis. Gerber-Ferder et al. show that non-metastatic breast tumours remotely reprogram the bone marrow stroma and instruct the myeloid differentiation of long-term haematopoietic stem cells.</description><identifier>ISSN: 1465-7392</identifier><identifier>EISSN: 1476-4679</identifier><identifier>DOI: 10.1038/s41556-023-01291-w</identifier><identifier>PMID: 38036749</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/31 ; 14/19 ; 38 ; 38/91 ; 631/250/232/2059 ; 631/532/1542 ; 631/67/1347 ; 64/60 ; Biomedical and Life Sciences ; Bone Marrow ; Bone Marrow Cells ; Bone tumors ; Breast cancer ; Breast Neoplasms - pathology ; Cancer ; Cancer Research ; Carcinogenesis ; Carcinogens ; Cell Biology ; Cell Differentiation ; Developmental Biology ; Differentiation (biology) ; Female ; Growth factors ; Hematopoietic stem cells ; Hematopoietic Stem Cells - metabolism ; Hemopoiesis ; Humans ; Immune system ; Inflammatory diseases ; Letter ; Life Sciences ; Mesenchymal stem cells ; Metastases ; Multipotent Stem Cells - metabolism ; Myeloid cells ; Myelopoiesis ; Progenitor cells ; Solid tumors ; Stem Cell Niche ; Stem Cells ; Stroma ; Transcriptomics ; Tumors</subject><ispartof>Nature cell biology, 2023-12, Vol.25 (12), p.1736-1745</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. The Author(s), under exclusive licence to Springer Nature Limited.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-7beafa639a8a0a6a166854cb2db7b1a2a09e61008938868621519eebd15447193</citedby><cites>FETCH-LOGICAL-c409t-7beafa639a8a0a6a166854cb2db7b1a2a09e61008938868621519eebd15447193</cites><orcidid>0000-0003-0798-4498 ; 0000-0001-8502-0905 ; 0000-0002-2733-1972 ; 0000-0003-3104-1684 ; 0000-0002-8771-3585</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41556-023-01291-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41556-023-01291-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38036749$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://cnrs.hal.science/hal-04480289$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gerber-Ferder, Yohan</creatorcontrib><creatorcontrib>Cosgrove, Jason</creatorcontrib><creatorcontrib>Duperray-Susini, Aleria</creatorcontrib><creatorcontrib>Missolo-Koussou, Yoann</creatorcontrib><creatorcontrib>Dubois, Marine</creatorcontrib><creatorcontrib>Stepaniuk, Kateryna</creatorcontrib><creatorcontrib>Pereira-Abrantes, Manuela</creatorcontrib><creatorcontrib>Sedlik, Christine</creatorcontrib><creatorcontrib>Lameiras, Sonia</creatorcontrib><creatorcontrib>Baulande, Sylvain</creatorcontrib><creatorcontrib>Bendriss-Vermare, Nathalie</creatorcontrib><creatorcontrib>Guermonprez, Pierre</creatorcontrib><creatorcontrib>Passaro, Diana</creatorcontrib><creatorcontrib>Perié, Leïla</creatorcontrib><creatorcontrib>Piaggio, Eliane</creatorcontrib><creatorcontrib>Helft, Julie</creatorcontrib><title>Breast cancer remotely imposes a myeloid bias on haematopoietic stem cells by reprogramming the bone marrow niche</title><title>Nature cell biology</title><addtitle>Nat Cell Biol</addtitle><addtitle>Nat Cell Biol</addtitle><description>Myeloid cell infiltration of solid tumours generally associates with poor patient prognosis and disease severity 1 – 13 . Therefore, understanding the regulation of myeloid cell differentiation during cancer is crucial to counteract their pro-tumourigenic role. Bone marrow (BM) haematopoiesis is a tightly regulated process for the production of all immune cells in accordance to tissue needs 14 . Myeloid cells differentiate during haematopoiesis from multipotent haematopoietic stem and progenitor cells (HSPCs) 15 – 17 . HSPCs can sense inflammatory signals from the periphery during infections 18 – 21 or inflammatory disorders 22 – 27 . In these settings, HSPC expansion is associated with increased myeloid differentiation 28 , 29 . During carcinogenesis, the elevation of haematopoietic growth factors supports the expansion and differentiation of committed myeloid progenitors 5 , 30 . However, it is unclear whether cancer-related inflammation also triggers demand-adapted haematopoiesis at the level of multipotent HSPCs. In the BM, HSPCs reside within the haematopoietic niche which delivers HSC maintenance and differentiation cues 31 – 35 . Mesenchymal stem cells (MSCs) are a major cellular component of the BM niche and contribute to HSC homeostasis 36 – 41 . Modifications of MSCs in systemic disorders have been associated with HSC differentiation towards myeloid cells 22 , 42 . It is unknown if MSCs are regulated in the context of solid tumours and if their myeloid supportive activity is impacted by cancer-induced systemic changes. Here, using unbiased transcriptomic analysis and in situ imaging of HSCs and the BM niche during breast cancer, we show that both HSCs and MSCs are transcriptionally and spatially modified. We demonstrate that breast tumour can distantly remodel the cellular cross-talks in the BM niche leading to increased myelopoiesis. Gerber-Ferder et al. show that non-metastatic breast tumours remotely reprogram the bone marrow stroma and instruct the myeloid differentiation of long-term haematopoietic stem cells.</description><subject>13/31</subject><subject>14/19</subject><subject>38</subject><subject>38/91</subject><subject>631/250/232/2059</subject><subject>631/532/1542</subject><subject>631/67/1347</subject><subject>64/60</subject><subject>Biomedical and Life Sciences</subject><subject>Bone Marrow</subject><subject>Bone Marrow Cells</subject><subject>Bone tumors</subject><subject>Breast cancer</subject><subject>Breast Neoplasms - pathology</subject><subject>Cancer</subject><subject>Cancer Research</subject><subject>Carcinogenesis</subject><subject>Carcinogens</subject><subject>Cell Biology</subject><subject>Cell Differentiation</subject><subject>Developmental Biology</subject><subject>Differentiation (biology)</subject><subject>Female</subject><subject>Growth factors</subject><subject>Hematopoietic stem cells</subject><subject>Hematopoietic Stem Cells - metabolism</subject><subject>Hemopoiesis</subject><subject>Humans</subject><subject>Immune system</subject><subject>Inflammatory diseases</subject><subject>Letter</subject><subject>Life Sciences</subject><subject>Mesenchymal stem cells</subject><subject>Metastases</subject><subject>Multipotent Stem Cells - metabolism</subject><subject>Myeloid cells</subject><subject>Myelopoiesis</subject><subject>Progenitor cells</subject><subject>Solid tumors</subject><subject>Stem Cell Niche</subject><subject>Stem Cells</subject><subject>Stroma</subject><subject>Transcriptomics</subject><subject>Tumors</subject><issn>1465-7392</issn><issn>1476-4679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kcFPHCEYxYmxqdb2H_DQkHiph6kwMAwc1dTaZJNe6pl8zH67ixmGFWbd7H8v07E26aEnCPze4308Qs45-8qZ0FdZ8qZRFatFxXhteLU_IqdctqqSqjXH0141VStMfUI-5PzIGJeSte_JidBMqFaaU_J0kxDySDsYOkw0YYgj9gfqwzZmzBRoOGAf_ZI6D5nGgW4AA4xxGz2OvqN5xEA77PtM3aHotymuE4TghzUdN0hdHJAGSCnu6eC7DX4k71bQZ_z0up6Rh7tvv27vq8XP7z9urxdVJ5kZq9YhrEAJAxoYKOBK6UZ2rl661nGogRlUnDFthNZKq5o33CC6JW-kbLkRZ-Ry9t1Ab7fJlwwHG8Hb--uFnc6YlJrV2jzzwn6Z2ZL-aYd5tMHnaSgYMO6yLZTSjJdfK-jFP-hj3KWhTDJRpmlEQQtVz1SXYs4JV28JOLNTeXYuz5by7O_y7L6IPr9a71zA5ZvkT1sFEDOQy9WwxvT37f_YvgBlEKTe</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Gerber-Ferder, Yohan</creator><creator>Cosgrove, Jason</creator><creator>Duperray-Susini, Aleria</creator><creator>Missolo-Koussou, Yoann</creator><creator>Dubois, Marine</creator><creator>Stepaniuk, Kateryna</creator><creator>Pereira-Abrantes, Manuela</creator><creator>Sedlik, Christine</creator><creator>Lameiras, Sonia</creator><creator>Baulande, Sylvain</creator><creator>Bendriss-Vermare, Nathalie</creator><creator>Guermonprez, Pierre</creator><creator>Passaro, Diana</creator><creator>Perié, Leïla</creator><creator>Piaggio, Eliane</creator><creator>Helft, Julie</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-0798-4498</orcidid><orcidid>https://orcid.org/0000-0001-8502-0905</orcidid><orcidid>https://orcid.org/0000-0002-2733-1972</orcidid><orcidid>https://orcid.org/0000-0003-3104-1684</orcidid><orcidid>https://orcid.org/0000-0002-8771-3585</orcidid></search><sort><creationdate>20231201</creationdate><title>Breast cancer remotely imposes a myeloid bias on haematopoietic stem cells by reprogramming the bone marrow niche</title><author>Gerber-Ferder, Yohan ; Cosgrove, Jason ; Duperray-Susini, Aleria ; Missolo-Koussou, Yoann ; Dubois, Marine ; Stepaniuk, Kateryna ; Pereira-Abrantes, Manuela ; Sedlik, Christine ; Lameiras, Sonia ; Baulande, Sylvain ; Bendriss-Vermare, Nathalie ; Guermonprez, Pierre ; Passaro, Diana ; Perié, Leïla ; Piaggio, Eliane ; Helft, Julie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-7beafa639a8a0a6a166854cb2db7b1a2a09e61008938868621519eebd15447193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>13/31</topic><topic>14/19</topic><topic>38</topic><topic>38/91</topic><topic>631/250/232/2059</topic><topic>631/532/1542</topic><topic>631/67/1347</topic><topic>64/60</topic><topic>Biomedical and Life Sciences</topic><topic>Bone Marrow</topic><topic>Bone Marrow Cells</topic><topic>Bone tumors</topic><topic>Breast cancer</topic><topic>Breast Neoplasms - pathology</topic><topic>Cancer</topic><topic>Cancer Research</topic><topic>Carcinogenesis</topic><topic>Carcinogens</topic><topic>Cell Biology</topic><topic>Cell Differentiation</topic><topic>Developmental Biology</topic><topic>Differentiation (biology)</topic><topic>Female</topic><topic>Growth factors</topic><topic>Hematopoietic stem cells</topic><topic>Hematopoietic Stem Cells - metabolism</topic><topic>Hemopoiesis</topic><topic>Humans</topic><topic>Immune system</topic><topic>Inflammatory diseases</topic><topic>Letter</topic><topic>Life Sciences</topic><topic>Mesenchymal stem cells</topic><topic>Metastases</topic><topic>Multipotent Stem Cells - metabolism</topic><topic>Myeloid cells</topic><topic>Myelopoiesis</topic><topic>Progenitor cells</topic><topic>Solid tumors</topic><topic>Stem Cell Niche</topic><topic>Stem Cells</topic><topic>Stroma</topic><topic>Transcriptomics</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gerber-Ferder, Yohan</creatorcontrib><creatorcontrib>Cosgrove, Jason</creatorcontrib><creatorcontrib>Duperray-Susini, Aleria</creatorcontrib><creatorcontrib>Missolo-Koussou, Yoann</creatorcontrib><creatorcontrib>Dubois, Marine</creatorcontrib><creatorcontrib>Stepaniuk, Kateryna</creatorcontrib><creatorcontrib>Pereira-Abrantes, Manuela</creatorcontrib><creatorcontrib>Sedlik, Christine</creatorcontrib><creatorcontrib>Lameiras, Sonia</creatorcontrib><creatorcontrib>Baulande, Sylvain</creatorcontrib><creatorcontrib>Bendriss-Vermare, Nathalie</creatorcontrib><creatorcontrib>Guermonprez, Pierre</creatorcontrib><creatorcontrib>Passaro, Diana</creatorcontrib><creatorcontrib>Perié, Leïla</creatorcontrib><creatorcontrib>Piaggio, Eliane</creatorcontrib><creatorcontrib>Helft, Julie</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Nature cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gerber-Ferder, Yohan</au><au>Cosgrove, Jason</au><au>Duperray-Susini, Aleria</au><au>Missolo-Koussou, Yoann</au><au>Dubois, Marine</au><au>Stepaniuk, Kateryna</au><au>Pereira-Abrantes, Manuela</au><au>Sedlik, Christine</au><au>Lameiras, Sonia</au><au>Baulande, Sylvain</au><au>Bendriss-Vermare, Nathalie</au><au>Guermonprez, Pierre</au><au>Passaro, Diana</au><au>Perié, Leïla</au><au>Piaggio, Eliane</au><au>Helft, Julie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Breast cancer remotely imposes a myeloid bias on haematopoietic stem cells by reprogramming the bone marrow niche</atitle><jtitle>Nature cell biology</jtitle><stitle>Nat Cell Biol</stitle><addtitle>Nat Cell Biol</addtitle><date>2023-12-01</date><risdate>2023</risdate><volume>25</volume><issue>12</issue><spage>1736</spage><epage>1745</epage><pages>1736-1745</pages><issn>1465-7392</issn><eissn>1476-4679</eissn><abstract>Myeloid cell infiltration of solid tumours generally associates with poor patient prognosis and disease severity 1 – 13 . Therefore, understanding the regulation of myeloid cell differentiation during cancer is crucial to counteract their pro-tumourigenic role. Bone marrow (BM) haematopoiesis is a tightly regulated process for the production of all immune cells in accordance to tissue needs 14 . Myeloid cells differentiate during haematopoiesis from multipotent haematopoietic stem and progenitor cells (HSPCs) 15 – 17 . HSPCs can sense inflammatory signals from the periphery during infections 18 – 21 or inflammatory disorders 22 – 27 . In these settings, HSPC expansion is associated with increased myeloid differentiation 28 , 29 . During carcinogenesis, the elevation of haematopoietic growth factors supports the expansion and differentiation of committed myeloid progenitors 5 , 30 . However, it is unclear whether cancer-related inflammation also triggers demand-adapted haematopoiesis at the level of multipotent HSPCs. In the BM, HSPCs reside within the haematopoietic niche which delivers HSC maintenance and differentiation cues 31 – 35 . Mesenchymal stem cells (MSCs) are a major cellular component of the BM niche and contribute to HSC homeostasis 36 – 41 . Modifications of MSCs in systemic disorders have been associated with HSC differentiation towards myeloid cells 22 , 42 . It is unknown if MSCs are regulated in the context of solid tumours and if their myeloid supportive activity is impacted by cancer-induced systemic changes. Here, using unbiased transcriptomic analysis and in situ imaging of HSCs and the BM niche during breast cancer, we show that both HSCs and MSCs are transcriptionally and spatially modified. We demonstrate that breast tumour can distantly remodel the cellular cross-talks in the BM niche leading to increased myelopoiesis. Gerber-Ferder et al. show that non-metastatic breast tumours remotely reprogram the bone marrow stroma and instruct the myeloid differentiation of long-term haematopoietic stem cells.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>38036749</pmid><doi>10.1038/s41556-023-01291-w</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0798-4498</orcidid><orcidid>https://orcid.org/0000-0001-8502-0905</orcidid><orcidid>https://orcid.org/0000-0002-2733-1972</orcidid><orcidid>https://orcid.org/0000-0003-3104-1684</orcidid><orcidid>https://orcid.org/0000-0002-8771-3585</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1465-7392
ispartof Nature cell biology, 2023-12, Vol.25 (12), p.1736-1745
issn 1465-7392
1476-4679
language eng
recordid cdi_hal_primary_oai_HAL_hal_04480289v1
source MEDLINE; Nature Journals Online; SpringerLink Journals - AutoHoldings
subjects 13/31
14/19
38
38/91
631/250/232/2059
631/532/1542
631/67/1347
64/60
Biomedical and Life Sciences
Bone Marrow
Bone Marrow Cells
Bone tumors
Breast cancer
Breast Neoplasms - pathology
Cancer
Cancer Research
Carcinogenesis
Carcinogens
Cell Biology
Cell Differentiation
Developmental Biology
Differentiation (biology)
Female
Growth factors
Hematopoietic stem cells
Hematopoietic Stem Cells - metabolism
Hemopoiesis
Humans
Immune system
Inflammatory diseases
Letter
Life Sciences
Mesenchymal stem cells
Metastases
Multipotent Stem Cells - metabolism
Myeloid cells
Myelopoiesis
Progenitor cells
Solid tumors
Stem Cell Niche
Stem Cells
Stroma
Transcriptomics
Tumors
title Breast cancer remotely imposes a myeloid bias on haematopoietic stem cells by reprogramming the bone marrow niche
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T07%3A46%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Breast%20cancer%20remotely%20imposes%20a%20myeloid%20bias%20on%20haematopoietic%20stem%20cells%20by%20reprogramming%20the%20bone%20marrow%20niche&rft.jtitle=Nature%20cell%20biology&rft.au=Gerber-Ferder,%20Yohan&rft.date=2023-12-01&rft.volume=25&rft.issue=12&rft.spage=1736&rft.epage=1745&rft.pages=1736-1745&rft.issn=1465-7392&rft.eissn=1476-4679&rft_id=info:doi/10.1038/s41556-023-01291-w&rft_dat=%3Cproquest_hal_p%3E2899553968%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2899553968&rft_id=info:pmid/38036749&rfr_iscdi=true