A necessary and sufficient condition of asymptotic stability for a class of Fornasini-Marchesini models

In this paper, we study the asymptotic stability of a particular class of linear 2D discrete Fornasini-Marchesini models. The solutions of the model can be expressed in terms of doubly indexed sequences in a simple way only when the matrices describing the model commute. In this situation, we are ab...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Linear algebra and its applications 2023-02, Vol.658, p.206-232
Hauptverfasser: Bachelier, Olivier, Cluzeau, Thomas, Rigaud, Alexandre, Silva Àlvarez, Francisco José, Yeganefar, Nima
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 232
container_issue
container_start_page 206
container_title Linear algebra and its applications
container_volume 658
creator Bachelier, Olivier
Cluzeau, Thomas
Rigaud, Alexandre
Silva Àlvarez, Francisco José
Yeganefar, Nima
description In this paper, we study the asymptotic stability of a particular class of linear 2D discrete Fornasini-Marchesini models. The solutions of the model can be expressed in terms of doubly indexed sequences in a simple way only when the matrices describing the model commute. In this situation, we are able to analyse directly the limit of all the trajectories. By doing so, we propose the first necessary and sufficient condition for asymptotic stability of Fornasini-Marchesini matrix models. This condition is not computationally challenging as it is ultimately based on the eigenvalues of the matrices describing the model. We support our result with numerical simulations.
doi_str_mv 10.1016/j.laa.2022.10.026
format Article
fullrecord <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04475531v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0024379522003913</els_id><sourcerecordid>S0024379522003913</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-1e9d63bef29013b848be0b7d241ef3edd260d1585f2189e5480b9ab630e045023</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKsfwFuuHnadJPsXT6VYK1S86Dlkk4lN2W5KEgv99u5S8ehpZh7vDbwfIfcMcgasetzlvVI5B87HOwdeXZAZa2qRsaasLskMgBeZqNvymtzEuAOAogY-I18LOqDGGFU4UTUYGr-tddrhkKj2g3HJ-YF6S1U87Q_JJ6dpTKpzvUsnan2giupexTh5Vj4MKrrBZW8q6C1OK917g328JVdW9RHvfuecfK6eP5brbPP-8rpcbDIteJUyhq2pRIeWt8BE1xRNh9DVhhcMrUBjeAWGlU1pOWtaLIsGulZ1lQCEogQu5uTh_HerenkIbj_2kl45uV5s5KRBUdRlKdiRjV529urgYwxo_wIM5ERV7uRIVU5UJ2mkOmaezpmxEx4dBhknWBqNC6iTNN79k_4B4eB_8Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A necessary and sufficient condition of asymptotic stability for a class of Fornasini-Marchesini models</title><source>Elsevier ScienceDirect Journals</source><creator>Bachelier, Olivier ; Cluzeau, Thomas ; Rigaud, Alexandre ; Silva Àlvarez, Francisco José ; Yeganefar, Nima</creator><creatorcontrib>Bachelier, Olivier ; Cluzeau, Thomas ; Rigaud, Alexandre ; Silva Àlvarez, Francisco José ; Yeganefar, Nima</creatorcontrib><description>In this paper, we study the asymptotic stability of a particular class of linear 2D discrete Fornasini-Marchesini models. The solutions of the model can be expressed in terms of doubly indexed sequences in a simple way only when the matrices describing the model commute. In this situation, we are able to analyse directly the limit of all the trajectories. By doing so, we propose the first necessary and sufficient condition for asymptotic stability of Fornasini-Marchesini matrix models. This condition is not computationally challenging as it is ultimately based on the eigenvalues of the matrices describing the model. We support our result with numerical simulations.</description><identifier>ISSN: 0024-3795</identifier><identifier>EISSN: 1873-1856</identifier><identifier>DOI: 10.1016/j.laa.2022.10.026</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>2D discrete systems ; Asymptotic stability ; Automatic Control Engineering ; Computer Science ; Fornasini-Marchesini models ; Linear systems ; Multidimensional systems</subject><ispartof>Linear algebra and its applications, 2023-02, Vol.658, p.206-232</ispartof><rights>2022 Elsevier Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c326t-1e9d63bef29013b848be0b7d241ef3edd260d1585f2189e5480b9ab630e045023</cites><orcidid>0000-0001-6465-7261 ; 0000-0002-1655-891X ; 0000-0002-6030-9419 ; 0000-0003-0796-2838</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.laa.2022.10.026$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,778,782,883,3539,27907,27908,45978</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04475531$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bachelier, Olivier</creatorcontrib><creatorcontrib>Cluzeau, Thomas</creatorcontrib><creatorcontrib>Rigaud, Alexandre</creatorcontrib><creatorcontrib>Silva Àlvarez, Francisco José</creatorcontrib><creatorcontrib>Yeganefar, Nima</creatorcontrib><title>A necessary and sufficient condition of asymptotic stability for a class of Fornasini-Marchesini models</title><title>Linear algebra and its applications</title><description>In this paper, we study the asymptotic stability of a particular class of linear 2D discrete Fornasini-Marchesini models. The solutions of the model can be expressed in terms of doubly indexed sequences in a simple way only when the matrices describing the model commute. In this situation, we are able to analyse directly the limit of all the trajectories. By doing so, we propose the first necessary and sufficient condition for asymptotic stability of Fornasini-Marchesini matrix models. This condition is not computationally challenging as it is ultimately based on the eigenvalues of the matrices describing the model. We support our result with numerical simulations.</description><subject>2D discrete systems</subject><subject>Asymptotic stability</subject><subject>Automatic Control Engineering</subject><subject>Computer Science</subject><subject>Fornasini-Marchesini models</subject><subject>Linear systems</subject><subject>Multidimensional systems</subject><issn>0024-3795</issn><issn>1873-1856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKsfwFuuHnadJPsXT6VYK1S86Dlkk4lN2W5KEgv99u5S8ehpZh7vDbwfIfcMcgasetzlvVI5B87HOwdeXZAZa2qRsaasLskMgBeZqNvymtzEuAOAogY-I18LOqDGGFU4UTUYGr-tddrhkKj2g3HJ-YF6S1U87Q_JJ6dpTKpzvUsnan2giupexTh5Vj4MKrrBZW8q6C1OK917g328JVdW9RHvfuecfK6eP5brbPP-8rpcbDIteJUyhq2pRIeWt8BE1xRNh9DVhhcMrUBjeAWGlU1pOWtaLIsGulZ1lQCEogQu5uTh_HerenkIbj_2kl45uV5s5KRBUdRlKdiRjV529urgYwxo_wIM5ERV7uRIVU5UJ2mkOmaezpmxEx4dBhknWBqNC6iTNN79k_4B4eB_8Q</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Bachelier, Olivier</creator><creator>Cluzeau, Thomas</creator><creator>Rigaud, Alexandre</creator><creator>Silva Àlvarez, Francisco José</creator><creator>Yeganefar, Nima</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-6465-7261</orcidid><orcidid>https://orcid.org/0000-0002-1655-891X</orcidid><orcidid>https://orcid.org/0000-0002-6030-9419</orcidid><orcidid>https://orcid.org/0000-0003-0796-2838</orcidid></search><sort><creationdate>20230201</creationdate><title>A necessary and sufficient condition of asymptotic stability for a class of Fornasini-Marchesini models</title><author>Bachelier, Olivier ; Cluzeau, Thomas ; Rigaud, Alexandre ; Silva Àlvarez, Francisco José ; Yeganefar, Nima</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-1e9d63bef29013b848be0b7d241ef3edd260d1585f2189e5480b9ab630e045023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>2D discrete systems</topic><topic>Asymptotic stability</topic><topic>Automatic Control Engineering</topic><topic>Computer Science</topic><topic>Fornasini-Marchesini models</topic><topic>Linear systems</topic><topic>Multidimensional systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bachelier, Olivier</creatorcontrib><creatorcontrib>Cluzeau, Thomas</creatorcontrib><creatorcontrib>Rigaud, Alexandre</creatorcontrib><creatorcontrib>Silva Àlvarez, Francisco José</creatorcontrib><creatorcontrib>Yeganefar, Nima</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Linear algebra and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bachelier, Olivier</au><au>Cluzeau, Thomas</au><au>Rigaud, Alexandre</au><au>Silva Àlvarez, Francisco José</au><au>Yeganefar, Nima</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A necessary and sufficient condition of asymptotic stability for a class of Fornasini-Marchesini models</atitle><jtitle>Linear algebra and its applications</jtitle><date>2023-02-01</date><risdate>2023</risdate><volume>658</volume><spage>206</spage><epage>232</epage><pages>206-232</pages><issn>0024-3795</issn><eissn>1873-1856</eissn><abstract>In this paper, we study the asymptotic stability of a particular class of linear 2D discrete Fornasini-Marchesini models. The solutions of the model can be expressed in terms of doubly indexed sequences in a simple way only when the matrices describing the model commute. In this situation, we are able to analyse directly the limit of all the trajectories. By doing so, we propose the first necessary and sufficient condition for asymptotic stability of Fornasini-Marchesini matrix models. This condition is not computationally challenging as it is ultimately based on the eigenvalues of the matrices describing the model. We support our result with numerical simulations.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.laa.2022.10.026</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0001-6465-7261</orcidid><orcidid>https://orcid.org/0000-0002-1655-891X</orcidid><orcidid>https://orcid.org/0000-0002-6030-9419</orcidid><orcidid>https://orcid.org/0000-0003-0796-2838</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0024-3795
ispartof Linear algebra and its applications, 2023-02, Vol.658, p.206-232
issn 0024-3795
1873-1856
language eng
recordid cdi_hal_primary_oai_HAL_hal_04475531v1
source Elsevier ScienceDirect Journals
subjects 2D discrete systems
Asymptotic stability
Automatic Control Engineering
Computer Science
Fornasini-Marchesini models
Linear systems
Multidimensional systems
title A necessary and sufficient condition of asymptotic stability for a class of Fornasini-Marchesini models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T00%3A50%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20necessary%20and%20sufficient%20condition%20of%20asymptotic%20stability%20for%20a%20class%20of%20Fornasini-Marchesini%20models&rft.jtitle=Linear%20algebra%20and%20its%20applications&rft.au=Bachelier,%20Olivier&rft.date=2023-02-01&rft.volume=658&rft.spage=206&rft.epage=232&rft.pages=206-232&rft.issn=0024-3795&rft.eissn=1873-1856&rft_id=info:doi/10.1016/j.laa.2022.10.026&rft_dat=%3Celsevier_hal_p%3ES0024379522003913%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0024379522003913&rfr_iscdi=true