A necessary and sufficient condition of asymptotic stability for a class of Fornasini-Marchesini models
In this paper, we study the asymptotic stability of a particular class of linear 2D discrete Fornasini-Marchesini models. The solutions of the model can be expressed in terms of doubly indexed sequences in a simple way only when the matrices describing the model commute. In this situation, we are ab...
Gespeichert in:
Veröffentlicht in: | Linear algebra and its applications 2023-02, Vol.658, p.206-232 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 232 |
---|---|
container_issue | |
container_start_page | 206 |
container_title | Linear algebra and its applications |
container_volume | 658 |
creator | Bachelier, Olivier Cluzeau, Thomas Rigaud, Alexandre Silva Àlvarez, Francisco José Yeganefar, Nima |
description | In this paper, we study the asymptotic stability of a particular class of linear 2D discrete Fornasini-Marchesini models. The solutions of the model can be expressed in terms of doubly indexed sequences in a simple way only when the matrices describing the model commute. In this situation, we are able to analyse directly the limit of all the trajectories. By doing so, we propose the first necessary and sufficient condition for asymptotic stability of Fornasini-Marchesini matrix models. This condition is not computationally challenging as it is ultimately based on the eigenvalues of the matrices describing the model. We support our result with numerical simulations. |
doi_str_mv | 10.1016/j.laa.2022.10.026 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04475531v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0024379522003913</els_id><sourcerecordid>S0024379522003913</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-1e9d63bef29013b848be0b7d241ef3edd260d1585f2189e5480b9ab630e045023</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKsfwFuuHnadJPsXT6VYK1S86Dlkk4lN2W5KEgv99u5S8ehpZh7vDbwfIfcMcgasetzlvVI5B87HOwdeXZAZa2qRsaasLskMgBeZqNvymtzEuAOAogY-I18LOqDGGFU4UTUYGr-tddrhkKj2g3HJ-YF6S1U87Q_JJ6dpTKpzvUsnan2giupexTh5Vj4MKrrBZW8q6C1OK917g328JVdW9RHvfuecfK6eP5brbPP-8rpcbDIteJUyhq2pRIeWt8BE1xRNh9DVhhcMrUBjeAWGlU1pOWtaLIsGulZ1lQCEogQu5uTh_HerenkIbj_2kl45uV5s5KRBUdRlKdiRjV529urgYwxo_wIM5ERV7uRIVU5UJ2mkOmaezpmxEx4dBhknWBqNC6iTNN79k_4B4eB_8Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A necessary and sufficient condition of asymptotic stability for a class of Fornasini-Marchesini models</title><source>Elsevier ScienceDirect Journals</source><creator>Bachelier, Olivier ; Cluzeau, Thomas ; Rigaud, Alexandre ; Silva Àlvarez, Francisco José ; Yeganefar, Nima</creator><creatorcontrib>Bachelier, Olivier ; Cluzeau, Thomas ; Rigaud, Alexandre ; Silva Àlvarez, Francisco José ; Yeganefar, Nima</creatorcontrib><description>In this paper, we study the asymptotic stability of a particular class of linear 2D discrete Fornasini-Marchesini models. The solutions of the model can be expressed in terms of doubly indexed sequences in a simple way only when the matrices describing the model commute. In this situation, we are able to analyse directly the limit of all the trajectories. By doing so, we propose the first necessary and sufficient condition for asymptotic stability of Fornasini-Marchesini matrix models. This condition is not computationally challenging as it is ultimately based on the eigenvalues of the matrices describing the model. We support our result with numerical simulations.</description><identifier>ISSN: 0024-3795</identifier><identifier>EISSN: 1873-1856</identifier><identifier>DOI: 10.1016/j.laa.2022.10.026</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>2D discrete systems ; Asymptotic stability ; Automatic Control Engineering ; Computer Science ; Fornasini-Marchesini models ; Linear systems ; Multidimensional systems</subject><ispartof>Linear algebra and its applications, 2023-02, Vol.658, p.206-232</ispartof><rights>2022 Elsevier Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c326t-1e9d63bef29013b848be0b7d241ef3edd260d1585f2189e5480b9ab630e045023</cites><orcidid>0000-0001-6465-7261 ; 0000-0002-1655-891X ; 0000-0002-6030-9419 ; 0000-0003-0796-2838</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.laa.2022.10.026$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,778,782,883,3539,27907,27908,45978</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04475531$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bachelier, Olivier</creatorcontrib><creatorcontrib>Cluzeau, Thomas</creatorcontrib><creatorcontrib>Rigaud, Alexandre</creatorcontrib><creatorcontrib>Silva Àlvarez, Francisco José</creatorcontrib><creatorcontrib>Yeganefar, Nima</creatorcontrib><title>A necessary and sufficient condition of asymptotic stability for a class of Fornasini-Marchesini models</title><title>Linear algebra and its applications</title><description>In this paper, we study the asymptotic stability of a particular class of linear 2D discrete Fornasini-Marchesini models. The solutions of the model can be expressed in terms of doubly indexed sequences in a simple way only when the matrices describing the model commute. In this situation, we are able to analyse directly the limit of all the trajectories. By doing so, we propose the first necessary and sufficient condition for asymptotic stability of Fornasini-Marchesini matrix models. This condition is not computationally challenging as it is ultimately based on the eigenvalues of the matrices describing the model. We support our result with numerical simulations.</description><subject>2D discrete systems</subject><subject>Asymptotic stability</subject><subject>Automatic Control Engineering</subject><subject>Computer Science</subject><subject>Fornasini-Marchesini models</subject><subject>Linear systems</subject><subject>Multidimensional systems</subject><issn>0024-3795</issn><issn>1873-1856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKsfwFuuHnadJPsXT6VYK1S86Dlkk4lN2W5KEgv99u5S8ehpZh7vDbwfIfcMcgasetzlvVI5B87HOwdeXZAZa2qRsaasLskMgBeZqNvymtzEuAOAogY-I18LOqDGGFU4UTUYGr-tddrhkKj2g3HJ-YF6S1U87Q_JJ6dpTKpzvUsnan2giupexTh5Vj4MKrrBZW8q6C1OK917g328JVdW9RHvfuecfK6eP5brbPP-8rpcbDIteJUyhq2pRIeWt8BE1xRNh9DVhhcMrUBjeAWGlU1pOWtaLIsGulZ1lQCEogQu5uTh_HerenkIbj_2kl45uV5s5KRBUdRlKdiRjV529urgYwxo_wIM5ERV7uRIVU5UJ2mkOmaezpmxEx4dBhknWBqNC6iTNN79k_4B4eB_8Q</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Bachelier, Olivier</creator><creator>Cluzeau, Thomas</creator><creator>Rigaud, Alexandre</creator><creator>Silva Àlvarez, Francisco José</creator><creator>Yeganefar, Nima</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-6465-7261</orcidid><orcidid>https://orcid.org/0000-0002-1655-891X</orcidid><orcidid>https://orcid.org/0000-0002-6030-9419</orcidid><orcidid>https://orcid.org/0000-0003-0796-2838</orcidid></search><sort><creationdate>20230201</creationdate><title>A necessary and sufficient condition of asymptotic stability for a class of Fornasini-Marchesini models</title><author>Bachelier, Olivier ; Cluzeau, Thomas ; Rigaud, Alexandre ; Silva Àlvarez, Francisco José ; Yeganefar, Nima</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-1e9d63bef29013b848be0b7d241ef3edd260d1585f2189e5480b9ab630e045023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>2D discrete systems</topic><topic>Asymptotic stability</topic><topic>Automatic Control Engineering</topic><topic>Computer Science</topic><topic>Fornasini-Marchesini models</topic><topic>Linear systems</topic><topic>Multidimensional systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bachelier, Olivier</creatorcontrib><creatorcontrib>Cluzeau, Thomas</creatorcontrib><creatorcontrib>Rigaud, Alexandre</creatorcontrib><creatorcontrib>Silva Àlvarez, Francisco José</creatorcontrib><creatorcontrib>Yeganefar, Nima</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Linear algebra and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bachelier, Olivier</au><au>Cluzeau, Thomas</au><au>Rigaud, Alexandre</au><au>Silva Àlvarez, Francisco José</au><au>Yeganefar, Nima</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A necessary and sufficient condition of asymptotic stability for a class of Fornasini-Marchesini models</atitle><jtitle>Linear algebra and its applications</jtitle><date>2023-02-01</date><risdate>2023</risdate><volume>658</volume><spage>206</spage><epage>232</epage><pages>206-232</pages><issn>0024-3795</issn><eissn>1873-1856</eissn><abstract>In this paper, we study the asymptotic stability of a particular class of linear 2D discrete Fornasini-Marchesini models. The solutions of the model can be expressed in terms of doubly indexed sequences in a simple way only when the matrices describing the model commute. In this situation, we are able to analyse directly the limit of all the trajectories. By doing so, we propose the first necessary and sufficient condition for asymptotic stability of Fornasini-Marchesini matrix models. This condition is not computationally challenging as it is ultimately based on the eigenvalues of the matrices describing the model. We support our result with numerical simulations.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.laa.2022.10.026</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0001-6465-7261</orcidid><orcidid>https://orcid.org/0000-0002-1655-891X</orcidid><orcidid>https://orcid.org/0000-0002-6030-9419</orcidid><orcidid>https://orcid.org/0000-0003-0796-2838</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0024-3795 |
ispartof | Linear algebra and its applications, 2023-02, Vol.658, p.206-232 |
issn | 0024-3795 1873-1856 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04475531v1 |
source | Elsevier ScienceDirect Journals |
subjects | 2D discrete systems Asymptotic stability Automatic Control Engineering Computer Science Fornasini-Marchesini models Linear systems Multidimensional systems |
title | A necessary and sufficient condition of asymptotic stability for a class of Fornasini-Marchesini models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T00%3A50%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20necessary%20and%20sufficient%20condition%20of%20asymptotic%20stability%20for%20a%20class%20of%20Fornasini-Marchesini%20models&rft.jtitle=Linear%20algebra%20and%20its%20applications&rft.au=Bachelier,%20Olivier&rft.date=2023-02-01&rft.volume=658&rft.spage=206&rft.epage=232&rft.pages=206-232&rft.issn=0024-3795&rft.eissn=1873-1856&rft_id=info:doi/10.1016/j.laa.2022.10.026&rft_dat=%3Celsevier_hal_p%3ES0024379522003913%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0024379522003913&rfr_iscdi=true |