Distribution of microglia/immune cells in the brain of adult zebrafish in homeostatic and regenerative conditions: Focus on oxidative stress during brain repair

Microglia are macrophage‐like cells exerting determinant roles in neuroinflammatory and oxidative stress processes during brain regeneration. We used zebrafish as a model of brain plasticity and repair. First, by performing L‐plastin (Lcp1) immunohistochemistry and using transgenic Tg(mpeg1.1:GFP) o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of comparative neurology (1911) 2023-02, Vol.531 (2), p.238-255
Hauptverfasser: Narra, Sai Sandhya, Rondeau, Philippe, Fernezelian, Danielle, Gence, Laura, Ghaddar, Batoul, Bourdon, Emmanuel, Lefebvre d'Hellencourt, Christian, Rastegar, Sepand, Diotel, Nicolas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 255
container_issue 2
container_start_page 238
container_title Journal of comparative neurology (1911)
container_volume 531
creator Narra, Sai Sandhya
Rondeau, Philippe
Fernezelian, Danielle
Gence, Laura
Ghaddar, Batoul
Bourdon, Emmanuel
Lefebvre d'Hellencourt, Christian
Rastegar, Sepand
Diotel, Nicolas
description Microglia are macrophage‐like cells exerting determinant roles in neuroinflammatory and oxidative stress processes during brain regeneration. We used zebrafish as a model of brain plasticity and repair. First, by performing L‐plastin (Lcp1) immunohistochemistry and using transgenic Tg(mpeg1.1:GFP) or Tg(mpeg1.1:mCherry) fish, we analyzed the distribution of microglia/immune cells in the whole brain. Specific regional differences were evidenced in terms of microglia/immune cell density and morphology (elongated, branched, highly branched, and amoeboid). Taking advantage of Tg(fli:GFP) and Tg(GFAP::GFP) enabling the detection of endothelial cells and neural stem cells (NSCs), we highlighted the association of elongated microglia/immune cells with blood vessels and rounded/amoeboid microglia with NSCs. Second, after telencephalic injury, we showed that L‐plastin cells were still abundantly present at 5 days post‐lesion (dpl) and were associated with regenerative neurogenesis. Finally, RNA‐sequencing analysis from injured telencephalon (5 dpl) confirmed the upregulation of microglia/immune cell markers and highlighted a significant increase of genes involved in oxidative stress (nox2, nrf2a, and gsr). The analysis of antioxidant activities at 5 dpl also revealed an upregulation of superoxide dismutase and persistent H2O2 generation in the injured telencephalon. Also, microglia/immune cells were shown to be a source of oxidative stress at 5 dpl. Overall, our data provide a better characterization of microglia/immune cell distribution in the healthy zebrafish brain, highlighting some evolutionarily conserved features with mammals. They also emphasize that 5 days after injury, microglia/immune cells are still activated and are associated to a persistent redox imbalance. Together, these data raise the question of the role of oxidative stress in regenerative neurogenesis in zebrafish.
doi_str_mv 10.1002/cne.25421
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04470577v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2754499918</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3871-2d7b69d818f275fdcd42b6f43af9e29515b4054ea2976a1d2d476dc0151addcb3</originalsourceid><addsrcrecordid>eNp1kcFu1DAQhi0EokvhwAsgS1zgkK7tOHbMrVpairSCC5wtJ57sukrsxU4K7dP0UXGapUhInCzPfPr_mfkRek3JGSWErVsPZ6zijD5BK0qUKFQt6FO0yj1aKCXkCXqR0jUhRKmyfo5OSsFqJhldofuPLo3RNdPogsehw4NrY9j1zqzdMEwecAt9n7DzeNwDbqJxD5ixUz_iO8iFzqX93N-HAUIazehabLzFEXbgIeb_TVYJ3rrZI33Al6GdEp7tfjm7tPMMkBK2U3R-d3SJcDAuvkTPOtMneHV8T9H3y4tvm6ti-_XT5835tmjLWtKCWdkIZWtad0xWnW0tZ43oeGk6BUxVtGo4qTgYpqQw1DLLpbAtoRU11rZNeYreL7p70-tDdIOJtzoYp6_Ot3quEc4lqaS8oZl9t7CHGH5MkEY9uDTfyXgIU9L5tDUXvJIz-vYf9DpM0edNMlVxrpSi9V_zfPuUInSPE1Ci54h1jlg_RJzZN0fFqRnAPpJ_Ms3AegF-uh5u_6-kN18uFsnfIaSyHA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2754499918</pqid></control><display><type>article</type><title>Distribution of microglia/immune cells in the brain of adult zebrafish in homeostatic and regenerative conditions: Focus on oxidative stress during brain repair</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Narra, Sai Sandhya ; Rondeau, Philippe ; Fernezelian, Danielle ; Gence, Laura ; Ghaddar, Batoul ; Bourdon, Emmanuel ; Lefebvre d'Hellencourt, Christian ; Rastegar, Sepand ; Diotel, Nicolas</creator><creatorcontrib>Narra, Sai Sandhya ; Rondeau, Philippe ; Fernezelian, Danielle ; Gence, Laura ; Ghaddar, Batoul ; Bourdon, Emmanuel ; Lefebvre d'Hellencourt, Christian ; Rastegar, Sepand ; Diotel, Nicolas</creatorcontrib><description>Microglia are macrophage‐like cells exerting determinant roles in neuroinflammatory and oxidative stress processes during brain regeneration. We used zebrafish as a model of brain plasticity and repair. First, by performing L‐plastin (Lcp1) immunohistochemistry and using transgenic Tg(mpeg1.1:GFP) or Tg(mpeg1.1:mCherry) fish, we analyzed the distribution of microglia/immune cells in the whole brain. Specific regional differences were evidenced in terms of microglia/immune cell density and morphology (elongated, branched, highly branched, and amoeboid). Taking advantage of Tg(fli:GFP) and Tg(GFAP::GFP) enabling the detection of endothelial cells and neural stem cells (NSCs), we highlighted the association of elongated microglia/immune cells with blood vessels and rounded/amoeboid microglia with NSCs. Second, after telencephalic injury, we showed that L‐plastin cells were still abundantly present at 5 days post‐lesion (dpl) and were associated with regenerative neurogenesis. Finally, RNA‐sequencing analysis from injured telencephalon (5 dpl) confirmed the upregulation of microglia/immune cell markers and highlighted a significant increase of genes involved in oxidative stress (nox2, nrf2a, and gsr). The analysis of antioxidant activities at 5 dpl also revealed an upregulation of superoxide dismutase and persistent H2O2 generation in the injured telencephalon. Also, microglia/immune cells were shown to be a source of oxidative stress at 5 dpl. Overall, our data provide a better characterization of microglia/immune cell distribution in the healthy zebrafish brain, highlighting some evolutionarily conserved features with mammals. They also emphasize that 5 days after injury, microglia/immune cells are still activated and are associated to a persistent redox imbalance. Together, these data raise the question of the role of oxidative stress in regenerative neurogenesis in zebrafish.</description><identifier>ISSN: 0021-9967</identifier><identifier>EISSN: 1096-9861</identifier><identifier>DOI: 10.1002/cne.25421</identifier><identifier>PMID: 36282721</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Animals ; Blood vessels ; Brain - metabolism ; brain injury ; Cell density ; CYBB protein ; Cytology ; Danio rerio ; Disease Models, Animal ; Endothelial cells ; Endothelial Cells - metabolism ; GA-binding protein ; Glial fibrillary acidic protein ; Hydrogen peroxide ; immune cells ; Immunohistochemistry ; Inflammation ; Life Sciences ; Macrophages ; Mammals ; Microglia ; Microglia - metabolism ; Neural stem cells ; Neurogenesis ; Neuroplasticity ; Oxidative Stress ; Regeneration ; Sequence analysis ; SOD ; Stem cells ; Superoxide dismutase ; Telencephalon ; teleost ; Zebrafish ; Zebrafish - metabolism ; Zebrafish Proteins - genetics ; Zebrafish Proteins - metabolism</subject><ispartof>Journal of comparative neurology (1911), 2023-02, Vol.531 (2), p.238-255</ispartof><rights>2022 Wiley Periodicals LLC.</rights><rights>2023 Wiley Periodicals LLC.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3871-2d7b69d818f275fdcd42b6f43af9e29515b4054ea2976a1d2d476dc0151addcb3</citedby><cites>FETCH-LOGICAL-c3871-2d7b69d818f275fdcd42b6f43af9e29515b4054ea2976a1d2d476dc0151addcb3</cites><orcidid>0000-0003-4411-5646 ; 0000-0003-2032-518X ; 0000-0003-3731-150X ; 0000-0003-2360-2197 ; 0000-0002-4652-1376</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcne.25421$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcne.25421$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,778,782,883,1414,27911,27912,45561,45562</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36282721$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04470577$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Narra, Sai Sandhya</creatorcontrib><creatorcontrib>Rondeau, Philippe</creatorcontrib><creatorcontrib>Fernezelian, Danielle</creatorcontrib><creatorcontrib>Gence, Laura</creatorcontrib><creatorcontrib>Ghaddar, Batoul</creatorcontrib><creatorcontrib>Bourdon, Emmanuel</creatorcontrib><creatorcontrib>Lefebvre d'Hellencourt, Christian</creatorcontrib><creatorcontrib>Rastegar, Sepand</creatorcontrib><creatorcontrib>Diotel, Nicolas</creatorcontrib><title>Distribution of microglia/immune cells in the brain of adult zebrafish in homeostatic and regenerative conditions: Focus on oxidative stress during brain repair</title><title>Journal of comparative neurology (1911)</title><addtitle>J Comp Neurol</addtitle><description>Microglia are macrophage‐like cells exerting determinant roles in neuroinflammatory and oxidative stress processes during brain regeneration. We used zebrafish as a model of brain plasticity and repair. First, by performing L‐plastin (Lcp1) immunohistochemistry and using transgenic Tg(mpeg1.1:GFP) or Tg(mpeg1.1:mCherry) fish, we analyzed the distribution of microglia/immune cells in the whole brain. Specific regional differences were evidenced in terms of microglia/immune cell density and morphology (elongated, branched, highly branched, and amoeboid). Taking advantage of Tg(fli:GFP) and Tg(GFAP::GFP) enabling the detection of endothelial cells and neural stem cells (NSCs), we highlighted the association of elongated microglia/immune cells with blood vessels and rounded/amoeboid microglia with NSCs. Second, after telencephalic injury, we showed that L‐plastin cells were still abundantly present at 5 days post‐lesion (dpl) and were associated with regenerative neurogenesis. Finally, RNA‐sequencing analysis from injured telencephalon (5 dpl) confirmed the upregulation of microglia/immune cell markers and highlighted a significant increase of genes involved in oxidative stress (nox2, nrf2a, and gsr). The analysis of antioxidant activities at 5 dpl also revealed an upregulation of superoxide dismutase and persistent H2O2 generation in the injured telencephalon. Also, microglia/immune cells were shown to be a source of oxidative stress at 5 dpl. Overall, our data provide a better characterization of microglia/immune cell distribution in the healthy zebrafish brain, highlighting some evolutionarily conserved features with mammals. They also emphasize that 5 days after injury, microglia/immune cells are still activated and are associated to a persistent redox imbalance. Together, these data raise the question of the role of oxidative stress in regenerative neurogenesis in zebrafish.</description><subject>Animals</subject><subject>Blood vessels</subject><subject>Brain - metabolism</subject><subject>brain injury</subject><subject>Cell density</subject><subject>CYBB protein</subject><subject>Cytology</subject><subject>Danio rerio</subject><subject>Disease Models, Animal</subject><subject>Endothelial cells</subject><subject>Endothelial Cells - metabolism</subject><subject>GA-binding protein</subject><subject>Glial fibrillary acidic protein</subject><subject>Hydrogen peroxide</subject><subject>immune cells</subject><subject>Immunohistochemistry</subject><subject>Inflammation</subject><subject>Life Sciences</subject><subject>Macrophages</subject><subject>Mammals</subject><subject>Microglia</subject><subject>Microglia - metabolism</subject><subject>Neural stem cells</subject><subject>Neurogenesis</subject><subject>Neuroplasticity</subject><subject>Oxidative Stress</subject><subject>Regeneration</subject><subject>Sequence analysis</subject><subject>SOD</subject><subject>Stem cells</subject><subject>Superoxide dismutase</subject><subject>Telencephalon</subject><subject>teleost</subject><subject>Zebrafish</subject><subject>Zebrafish - metabolism</subject><subject>Zebrafish Proteins - genetics</subject><subject>Zebrafish Proteins - metabolism</subject><issn>0021-9967</issn><issn>1096-9861</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kcFu1DAQhi0EokvhwAsgS1zgkK7tOHbMrVpairSCC5wtJ57sukrsxU4K7dP0UXGapUhInCzPfPr_mfkRek3JGSWErVsPZ6zijD5BK0qUKFQt6FO0yj1aKCXkCXqR0jUhRKmyfo5OSsFqJhldofuPLo3RNdPogsehw4NrY9j1zqzdMEwecAt9n7DzeNwDbqJxD5ixUz_iO8iFzqX93N-HAUIazehabLzFEXbgIeb_TVYJ3rrZI33Al6GdEp7tfjm7tPMMkBK2U3R-d3SJcDAuvkTPOtMneHV8T9H3y4tvm6ti-_XT5835tmjLWtKCWdkIZWtad0xWnW0tZ43oeGk6BUxVtGo4qTgYpqQw1DLLpbAtoRU11rZNeYreL7p70-tDdIOJtzoYp6_Ot3quEc4lqaS8oZl9t7CHGH5MkEY9uDTfyXgIU9L5tDUXvJIz-vYf9DpM0edNMlVxrpSi9V_zfPuUInSPE1Ci54h1jlg_RJzZN0fFqRnAPpJ_Ms3AegF-uh5u_6-kN18uFsnfIaSyHA</recordid><startdate>202302</startdate><enddate>202302</enddate><creator>Narra, Sai Sandhya</creator><creator>Rondeau, Philippe</creator><creator>Fernezelian, Danielle</creator><creator>Gence, Laura</creator><creator>Ghaddar, Batoul</creator><creator>Bourdon, Emmanuel</creator><creator>Lefebvre d'Hellencourt, Christian</creator><creator>Rastegar, Sepand</creator><creator>Diotel, Nicolas</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-4411-5646</orcidid><orcidid>https://orcid.org/0000-0003-2032-518X</orcidid><orcidid>https://orcid.org/0000-0003-3731-150X</orcidid><orcidid>https://orcid.org/0000-0003-2360-2197</orcidid><orcidid>https://orcid.org/0000-0002-4652-1376</orcidid></search><sort><creationdate>202302</creationdate><title>Distribution of microglia/immune cells in the brain of adult zebrafish in homeostatic and regenerative conditions: Focus on oxidative stress during brain repair</title><author>Narra, Sai Sandhya ; Rondeau, Philippe ; Fernezelian, Danielle ; Gence, Laura ; Ghaddar, Batoul ; Bourdon, Emmanuel ; Lefebvre d'Hellencourt, Christian ; Rastegar, Sepand ; Diotel, Nicolas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3871-2d7b69d818f275fdcd42b6f43af9e29515b4054ea2976a1d2d476dc0151addcb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Animals</topic><topic>Blood vessels</topic><topic>Brain - metabolism</topic><topic>brain injury</topic><topic>Cell density</topic><topic>CYBB protein</topic><topic>Cytology</topic><topic>Danio rerio</topic><topic>Disease Models, Animal</topic><topic>Endothelial cells</topic><topic>Endothelial Cells - metabolism</topic><topic>GA-binding protein</topic><topic>Glial fibrillary acidic protein</topic><topic>Hydrogen peroxide</topic><topic>immune cells</topic><topic>Immunohistochemistry</topic><topic>Inflammation</topic><topic>Life Sciences</topic><topic>Macrophages</topic><topic>Mammals</topic><topic>Microglia</topic><topic>Microglia - metabolism</topic><topic>Neural stem cells</topic><topic>Neurogenesis</topic><topic>Neuroplasticity</topic><topic>Oxidative Stress</topic><topic>Regeneration</topic><topic>Sequence analysis</topic><topic>SOD</topic><topic>Stem cells</topic><topic>Superoxide dismutase</topic><topic>Telencephalon</topic><topic>teleost</topic><topic>Zebrafish</topic><topic>Zebrafish - metabolism</topic><topic>Zebrafish Proteins - genetics</topic><topic>Zebrafish Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Narra, Sai Sandhya</creatorcontrib><creatorcontrib>Rondeau, Philippe</creatorcontrib><creatorcontrib>Fernezelian, Danielle</creatorcontrib><creatorcontrib>Gence, Laura</creatorcontrib><creatorcontrib>Ghaddar, Batoul</creatorcontrib><creatorcontrib>Bourdon, Emmanuel</creatorcontrib><creatorcontrib>Lefebvre d'Hellencourt, Christian</creatorcontrib><creatorcontrib>Rastegar, Sepand</creatorcontrib><creatorcontrib>Diotel, Nicolas</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of comparative neurology (1911)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Narra, Sai Sandhya</au><au>Rondeau, Philippe</au><au>Fernezelian, Danielle</au><au>Gence, Laura</au><au>Ghaddar, Batoul</au><au>Bourdon, Emmanuel</au><au>Lefebvre d'Hellencourt, Christian</au><au>Rastegar, Sepand</au><au>Diotel, Nicolas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distribution of microglia/immune cells in the brain of adult zebrafish in homeostatic and regenerative conditions: Focus on oxidative stress during brain repair</atitle><jtitle>Journal of comparative neurology (1911)</jtitle><addtitle>J Comp Neurol</addtitle><date>2023-02</date><risdate>2023</risdate><volume>531</volume><issue>2</issue><spage>238</spage><epage>255</epage><pages>238-255</pages><issn>0021-9967</issn><eissn>1096-9861</eissn><abstract>Microglia are macrophage‐like cells exerting determinant roles in neuroinflammatory and oxidative stress processes during brain regeneration. We used zebrafish as a model of brain plasticity and repair. First, by performing L‐plastin (Lcp1) immunohistochemistry and using transgenic Tg(mpeg1.1:GFP) or Tg(mpeg1.1:mCherry) fish, we analyzed the distribution of microglia/immune cells in the whole brain. Specific regional differences were evidenced in terms of microglia/immune cell density and morphology (elongated, branched, highly branched, and amoeboid). Taking advantage of Tg(fli:GFP) and Tg(GFAP::GFP) enabling the detection of endothelial cells and neural stem cells (NSCs), we highlighted the association of elongated microglia/immune cells with blood vessels and rounded/amoeboid microglia with NSCs. Second, after telencephalic injury, we showed that L‐plastin cells were still abundantly present at 5 days post‐lesion (dpl) and were associated with regenerative neurogenesis. Finally, RNA‐sequencing analysis from injured telencephalon (5 dpl) confirmed the upregulation of microglia/immune cell markers and highlighted a significant increase of genes involved in oxidative stress (nox2, nrf2a, and gsr). The analysis of antioxidant activities at 5 dpl also revealed an upregulation of superoxide dismutase and persistent H2O2 generation in the injured telencephalon. Also, microglia/immune cells were shown to be a source of oxidative stress at 5 dpl. Overall, our data provide a better characterization of microglia/immune cell distribution in the healthy zebrafish brain, highlighting some evolutionarily conserved features with mammals. They also emphasize that 5 days after injury, microglia/immune cells are still activated and are associated to a persistent redox imbalance. Together, these data raise the question of the role of oxidative stress in regenerative neurogenesis in zebrafish.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36282721</pmid><doi>10.1002/cne.25421</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-4411-5646</orcidid><orcidid>https://orcid.org/0000-0003-2032-518X</orcidid><orcidid>https://orcid.org/0000-0003-3731-150X</orcidid><orcidid>https://orcid.org/0000-0003-2360-2197</orcidid><orcidid>https://orcid.org/0000-0002-4652-1376</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9967
ispartof Journal of comparative neurology (1911), 2023-02, Vol.531 (2), p.238-255
issn 0021-9967
1096-9861
language eng
recordid cdi_hal_primary_oai_HAL_hal_04470577v1
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Animals
Blood vessels
Brain - metabolism
brain injury
Cell density
CYBB protein
Cytology
Danio rerio
Disease Models, Animal
Endothelial cells
Endothelial Cells - metabolism
GA-binding protein
Glial fibrillary acidic protein
Hydrogen peroxide
immune cells
Immunohistochemistry
Inflammation
Life Sciences
Macrophages
Mammals
Microglia
Microglia - metabolism
Neural stem cells
Neurogenesis
Neuroplasticity
Oxidative Stress
Regeneration
Sequence analysis
SOD
Stem cells
Superoxide dismutase
Telencephalon
teleost
Zebrafish
Zebrafish - metabolism
Zebrafish Proteins - genetics
Zebrafish Proteins - metabolism
title Distribution of microglia/immune cells in the brain of adult zebrafish in homeostatic and regenerative conditions: Focus on oxidative stress during brain repair
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T15%3A49%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distribution%20of%20microglia/immune%20cells%20in%20the%20brain%20of%20adult%20zebrafish%20in%20homeostatic%20and%20regenerative%20conditions:%20Focus%20on%20oxidative%20stress%20during%20brain%20repair&rft.jtitle=Journal%20of%20comparative%20neurology%20(1911)&rft.au=Narra,%20Sai%20Sandhya&rft.date=2023-02&rft.volume=531&rft.issue=2&rft.spage=238&rft.epage=255&rft.pages=238-255&rft.issn=0021-9967&rft.eissn=1096-9861&rft_id=info:doi/10.1002/cne.25421&rft_dat=%3Cproquest_hal_p%3E2754499918%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2754499918&rft_id=info:pmid/36282721&rfr_iscdi=true