Modern Strategies for Carbon Isotope Exchange

In contrast to stable and natural abundant carbon‐12, the synthesis of organic molecules with carbon (radio)isotopes must be conceived and optimized in order to navigate through the hurdles of radiochemical requirements, such as high costs of the starting materials, harsh conditions and radioactive...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2023-09, Vol.62 (36), p.e202303535-n/a
Hauptverfasser: Labiche, Alexandre, Malandain, Augustin, Molins, Maxime, Taran, Frédéric, Audisio, Davide
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 36
container_start_page e202303535
container_title Angewandte Chemie International Edition
container_volume 62
creator Labiche, Alexandre
Malandain, Augustin
Molins, Maxime
Taran, Frédéric
Audisio, Davide
description In contrast to stable and natural abundant carbon‐12, the synthesis of organic molecules with carbon (radio)isotopes must be conceived and optimized in order to navigate through the hurdles of radiochemical requirements, such as high costs of the starting materials, harsh conditions and radioactive waste generation. In addition, it must initiate from the small cohort of available C‐labeled building blocks. For long time, multi‐step approaches have represented the sole available patterns. On the other side, the development of chemical reactions based on the reversible cleavage of C−C bonds might offer new opportunities and reshape retrosynthetic analysis in radiosynthesis. This review aims to provide a short survey on the recently emerged carbon isotope exchange technologies that provide effective opportunity for late‐stage labeling. At present, such strategies have relied on the use of primary and easily accessible radiolabeled C1‐building blocks, such as carbon dioxide, carbon monoxide and cyanides, while the activation principles have been based on thermal, photocatalytic, metal‐catalyzed and biocatalytic processes. The field of carbon isotope labeling has recently explored new alternative avenues for better dealing with the hurdles of radiochemistry. This review focuses on the emerging opportunities provided by carbon isotope exchange (CIE) technologies. By dramatically reducing the number of steps and radioactive waste generated in preparation of tracers, CIE has great potential for accelerating clinical development of pharmaceuticals.
doi_str_mv 10.1002/anie.202303535
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04467334v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2803331241</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4475-f71dd6813ae143ea74dd417a6fe42c179a8941a6c0a190e57bad16c01c03f9c93</originalsourceid><addsrcrecordid>eNqF0M1PwjAYBvDGaATRq0ezxIsehn3Xbt2OhKCQoB7Uc1O2dzAyVmw3lf_eLkNMvHjqR3598vYh5BLoECgN7lRV4DCgAaMsZOER6UMYgM-EYMduzxnzRRxCj5xZu3Y-jml0SnpMUMFjDn3iP-oMTeW91EbVuCzQerk23liZha68mdW13qI3-UpXqlriOTnJVWnxYr8OyNv95HU89efPD7PxaO6nnIvQzwVkWRQDU-hGQCV4lnEQKsqRBymIRMUJBxWlVEFCMRQLlYE7QUpZnqQJG5DbLnelSrk1xUaZndSqkNPRXLZ3lPNIMMY_wNmbzm6Nfm_Q1nJT2BTLUlWoGyuDmDLGIOAtvf5D17oxlfuJU2EcUYhcjwMy7FRqtLUG88MEQGVbumxLl4fS3YOrfWyz2GB24D8tO5B04LMocfdPnBw9zSa_4d9sNopf</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2858601630</pqid></control><display><type>article</type><title>Modern Strategies for Carbon Isotope Exchange</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Labiche, Alexandre ; Malandain, Augustin ; Molins, Maxime ; Taran, Frédéric ; Audisio, Davide</creator><creatorcontrib>Labiche, Alexandre ; Malandain, Augustin ; Molins, Maxime ; Taran, Frédéric ; Audisio, Davide</creatorcontrib><description>In contrast to stable and natural abundant carbon‐12, the synthesis of organic molecules with carbon (radio)isotopes must be conceived and optimized in order to navigate through the hurdles of radiochemical requirements, such as high costs of the starting materials, harsh conditions and radioactive waste generation. In addition, it must initiate from the small cohort of available C‐labeled building blocks. For long time, multi‐step approaches have represented the sole available patterns. On the other side, the development of chemical reactions based on the reversible cleavage of C−C bonds might offer new opportunities and reshape retrosynthetic analysis in radiosynthesis. This review aims to provide a short survey on the recently emerged carbon isotope exchange technologies that provide effective opportunity for late‐stage labeling. At present, such strategies have relied on the use of primary and easily accessible radiolabeled C1‐building blocks, such as carbon dioxide, carbon monoxide and cyanides, while the activation principles have been based on thermal, photocatalytic, metal‐catalyzed and biocatalytic processes. The field of carbon isotope labeling has recently explored new alternative avenues for better dealing with the hurdles of radiochemistry. This review focuses on the emerging opportunities provided by carbon isotope exchange (CIE) technologies. By dramatically reducing the number of steps and radioactive waste generated in preparation of tracers, CIE has great potential for accelerating clinical development of pharmaceuticals.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202303535</identifier><identifier>PMID: 37074841</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Carbon ; Carbon Dioxide ; Carbon Isotope Exchange ; Carbon Isotopes ; Carbon monoxide ; Chemical reactions ; Chemical Sciences ; Chemical synthesis ; Cyanide ; Isotope Labeling ; Isotopes ; Organic chemistry ; Radioactive wastes ; Radiochemical analysis</subject><ispartof>Angewandte Chemie International Edition, 2023-09, Vol.62 (36), p.e202303535-n/a</ispartof><rights>2023 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH</rights><rights>2023 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4475-f71dd6813ae143ea74dd417a6fe42c179a8941a6c0a190e57bad16c01c03f9c93</citedby><cites>FETCH-LOGICAL-c4475-f71dd6813ae143ea74dd417a6fe42c179a8941a6c0a190e57bad16c01c03f9c93</cites><orcidid>0009-0003-1639-4139 ; 0009-0003-4183-5872 ; 0000-0001-5461-329X ; 0009-0001-6027-1764 ; 0000-0002-6234-3610</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202303535$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202303535$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37074841$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04467334$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Labiche, Alexandre</creatorcontrib><creatorcontrib>Malandain, Augustin</creatorcontrib><creatorcontrib>Molins, Maxime</creatorcontrib><creatorcontrib>Taran, Frédéric</creatorcontrib><creatorcontrib>Audisio, Davide</creatorcontrib><title>Modern Strategies for Carbon Isotope Exchange</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>In contrast to stable and natural abundant carbon‐12, the synthesis of organic molecules with carbon (radio)isotopes must be conceived and optimized in order to navigate through the hurdles of radiochemical requirements, such as high costs of the starting materials, harsh conditions and radioactive waste generation. In addition, it must initiate from the small cohort of available C‐labeled building blocks. For long time, multi‐step approaches have represented the sole available patterns. On the other side, the development of chemical reactions based on the reversible cleavage of C−C bonds might offer new opportunities and reshape retrosynthetic analysis in radiosynthesis. This review aims to provide a short survey on the recently emerged carbon isotope exchange technologies that provide effective opportunity for late‐stage labeling. At present, such strategies have relied on the use of primary and easily accessible radiolabeled C1‐building blocks, such as carbon dioxide, carbon monoxide and cyanides, while the activation principles have been based on thermal, photocatalytic, metal‐catalyzed and biocatalytic processes. The field of carbon isotope labeling has recently explored new alternative avenues for better dealing with the hurdles of radiochemistry. This review focuses on the emerging opportunities provided by carbon isotope exchange (CIE) technologies. By dramatically reducing the number of steps and radioactive waste generated in preparation of tracers, CIE has great potential for accelerating clinical development of pharmaceuticals.</description><subject>Carbon</subject><subject>Carbon Dioxide</subject><subject>Carbon Isotope Exchange</subject><subject>Carbon Isotopes</subject><subject>Carbon monoxide</subject><subject>Chemical reactions</subject><subject>Chemical Sciences</subject><subject>Chemical synthesis</subject><subject>Cyanide</subject><subject>Isotope Labeling</subject><subject>Isotopes</subject><subject>Organic chemistry</subject><subject>Radioactive wastes</subject><subject>Radiochemical analysis</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqF0M1PwjAYBvDGaATRq0ezxIsehn3Xbt2OhKCQoB7Uc1O2dzAyVmw3lf_eLkNMvHjqR3598vYh5BLoECgN7lRV4DCgAaMsZOER6UMYgM-EYMduzxnzRRxCj5xZu3Y-jml0SnpMUMFjDn3iP-oMTeW91EbVuCzQerk23liZha68mdW13qI3-UpXqlriOTnJVWnxYr8OyNv95HU89efPD7PxaO6nnIvQzwVkWRQDU-hGQCV4lnEQKsqRBymIRMUJBxWlVEFCMRQLlYE7QUpZnqQJG5DbLnelSrk1xUaZndSqkNPRXLZ3lPNIMMY_wNmbzm6Nfm_Q1nJT2BTLUlWoGyuDmDLGIOAtvf5D17oxlfuJU2EcUYhcjwMy7FRqtLUG88MEQGVbumxLl4fS3YOrfWyz2GB24D8tO5B04LMocfdPnBw9zSa_4d9sNopf</recordid><startdate>20230904</startdate><enddate>20230904</enddate><creator>Labiche, Alexandre</creator><creator>Malandain, Augustin</creator><creator>Molins, Maxime</creator><creator>Taran, Frédéric</creator><creator>Audisio, Davide</creator><general>Wiley Subscription Services, Inc</general><general>Wiley-VCH Verlag</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0009-0003-1639-4139</orcidid><orcidid>https://orcid.org/0009-0003-4183-5872</orcidid><orcidid>https://orcid.org/0000-0001-5461-329X</orcidid><orcidid>https://orcid.org/0009-0001-6027-1764</orcidid><orcidid>https://orcid.org/0000-0002-6234-3610</orcidid></search><sort><creationdate>20230904</creationdate><title>Modern Strategies for Carbon Isotope Exchange</title><author>Labiche, Alexandre ; Malandain, Augustin ; Molins, Maxime ; Taran, Frédéric ; Audisio, Davide</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4475-f71dd6813ae143ea74dd417a6fe42c179a8941a6c0a190e57bad16c01c03f9c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Carbon</topic><topic>Carbon Dioxide</topic><topic>Carbon Isotope Exchange</topic><topic>Carbon Isotopes</topic><topic>Carbon monoxide</topic><topic>Chemical reactions</topic><topic>Chemical Sciences</topic><topic>Chemical synthesis</topic><topic>Cyanide</topic><topic>Isotope Labeling</topic><topic>Isotopes</topic><topic>Organic chemistry</topic><topic>Radioactive wastes</topic><topic>Radiochemical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Labiche, Alexandre</creatorcontrib><creatorcontrib>Malandain, Augustin</creatorcontrib><creatorcontrib>Molins, Maxime</creatorcontrib><creatorcontrib>Taran, Frédéric</creatorcontrib><creatorcontrib>Audisio, Davide</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Labiche, Alexandre</au><au>Malandain, Augustin</au><au>Molins, Maxime</au><au>Taran, Frédéric</au><au>Audisio, Davide</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modern Strategies for Carbon Isotope Exchange</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2023-09-04</date><risdate>2023</risdate><volume>62</volume><issue>36</issue><spage>e202303535</spage><epage>n/a</epage><pages>e202303535-n/a</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>In contrast to stable and natural abundant carbon‐12, the synthesis of organic molecules with carbon (radio)isotopes must be conceived and optimized in order to navigate through the hurdles of radiochemical requirements, such as high costs of the starting materials, harsh conditions and radioactive waste generation. In addition, it must initiate from the small cohort of available C‐labeled building blocks. For long time, multi‐step approaches have represented the sole available patterns. On the other side, the development of chemical reactions based on the reversible cleavage of C−C bonds might offer new opportunities and reshape retrosynthetic analysis in radiosynthesis. This review aims to provide a short survey on the recently emerged carbon isotope exchange technologies that provide effective opportunity for late‐stage labeling. At present, such strategies have relied on the use of primary and easily accessible radiolabeled C1‐building blocks, such as carbon dioxide, carbon monoxide and cyanides, while the activation principles have been based on thermal, photocatalytic, metal‐catalyzed and biocatalytic processes. The field of carbon isotope labeling has recently explored new alternative avenues for better dealing with the hurdles of radiochemistry. This review focuses on the emerging opportunities provided by carbon isotope exchange (CIE) technologies. By dramatically reducing the number of steps and radioactive waste generated in preparation of tracers, CIE has great potential for accelerating clinical development of pharmaceuticals.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37074841</pmid><doi>10.1002/anie.202303535</doi><tpages>17</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0009-0003-1639-4139</orcidid><orcidid>https://orcid.org/0009-0003-4183-5872</orcidid><orcidid>https://orcid.org/0000-0001-5461-329X</orcidid><orcidid>https://orcid.org/0009-0001-6027-1764</orcidid><orcidid>https://orcid.org/0000-0002-6234-3610</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2023-09, Vol.62 (36), p.e202303535-n/a
issn 1433-7851
1521-3773
language eng
recordid cdi_hal_primary_oai_HAL_hal_04467334v1
source Wiley Online Library Journals Frontfile Complete
subjects Carbon
Carbon Dioxide
Carbon Isotope Exchange
Carbon Isotopes
Carbon monoxide
Chemical reactions
Chemical Sciences
Chemical synthesis
Cyanide
Isotope Labeling
Isotopes
Organic chemistry
Radioactive wastes
Radiochemical analysis
title Modern Strategies for Carbon Isotope Exchange
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T12%3A32%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modern%20Strategies%20for%20Carbon%20Isotope%20Exchange&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Labiche,%20Alexandre&rft.date=2023-09-04&rft.volume=62&rft.issue=36&rft.spage=e202303535&rft.epage=n/a&rft.pages=e202303535-n/a&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202303535&rft_dat=%3Cproquest_hal_p%3E2803331241%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2858601630&rft_id=info:pmid/37074841&rfr_iscdi=true