Computing Riemann–Roch polynomials and classifying hyper-Kähler fourfolds

We prove that a hyper-Kähler fourfold satisfying a mild topological assumption is of K3 [ 2 ] ^{[2]} deformation type. This proves in particular a conjecture of O’Grady stating that hyper-Kähler fourfolds of K3 [ 2 ] ^{[2]} numerical type are of K3 [ 2 ] ^{[2]} deformation type. Our topological assu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Mathematical Society 2024, Vol.37 (1), p.151-185
Hauptverfasser: Debarre, Olivier, Huybrechts, Daniel, Macrì, Emanuele, Voisin, Claire
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove that a hyper-Kähler fourfold satisfying a mild topological assumption is of K3 [ 2 ] ^{[2]} deformation type. This proves in particular a conjecture of O’Grady stating that hyper-Kähler fourfolds of K3 [ 2 ] ^{[2]} numerical type are of K3 [ 2 ] ^{[2]} deformation type. Our topological assumption concerns the existence of two integral degree-2 cohomology classes satisfying certain numerical intersection conditions. There are two main ingredients in the proof. We first prove a topological version of the statement, by showing that our topological assumption forces the Betti numbers, the Fujiki constant, and the Huybrechts–Riemann–Roch polynomial of the hyper-Kähler fourfold to be the same as those of K3 [ 2 ] ^{[2]} hyper-Kähler fourfolds. The key part of the article is then to prove the hyper-Kähler SYZ conjecture for hyper-Kähler fourfolds for divisor classes satisfying the numerical condition mentioned above.
ISSN:0894-0347
1088-6834
DOI:10.1090/jams/1016