Computing Riemann–Roch polynomials and classifying hyper-Kähler fourfolds
We prove that a hyper-Kähler fourfold satisfying a mild topological assumption is of K3 [ 2 ] ^{[2]} deformation type. This proves in particular a conjecture of O’Grady stating that hyper-Kähler fourfolds of K3 [ 2 ] ^{[2]} numerical type are of K3 [ 2 ] ^{[2]} deformation type. Our topological assu...
Gespeichert in:
Veröffentlicht in: | Journal of the American Mathematical Society 2024, Vol.37 (1), p.151-185 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove that a hyper-Kähler fourfold satisfying a mild topological assumption is of K3
[
2
]
^{[2]}
deformation type. This proves in particular a conjecture of O’Grady stating that hyper-Kähler fourfolds of K3
[
2
]
^{[2]}
numerical type are of K3
[
2
]
^{[2]}
deformation type. Our topological assumption concerns the existence of two integral degree-2 cohomology classes satisfying certain numerical intersection conditions.
There are two main ingredients in the proof. We first prove a topological version of the statement, by showing that our topological assumption forces the Betti numbers, the Fujiki constant, and the Huybrechts–Riemann–Roch polynomial of the hyper-Kähler fourfold to be the same as those of K3
[
2
]
^{[2]}
hyper-Kähler fourfolds. The key part of the article is then to prove the hyper-Kähler SYZ conjecture for hyper-Kähler fourfolds for divisor classes satisfying the numerical condition mentioned above. |
---|---|
ISSN: | 0894-0347 1088-6834 |
DOI: | 10.1090/jams/1016 |