Corrosion performance of slurry aluminide coatings in molten NaCl–KCl
The corrosion performance of water-based slurry aluminide coatings elaborated on iron- and nickel-based materials is investigated in molten chlorides as candidate heat transfer fluids (HTF) for thermal energy storage (TES) in third generation concentrated solar power (CSP) plants. This work presents...
Gespeichert in:
Veröffentlicht in: | Solar energy materials and solar cells 2021-05, Vol.223, p.110974, Article 110974 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 110974 |
container_title | Solar energy materials and solar cells |
container_volume | 223 |
creator | Grégoire, B. Oskay, C. Meißner, T.M. Galetz, M.C. |
description | The corrosion performance of water-based slurry aluminide coatings elaborated on iron- and nickel-based materials is investigated in molten chlorides as candidate heat transfer fluids (HTF) for thermal energy storage (TES) in third generation concentrated solar power (CSP) plants. This work presents a screening of four different materials (ferritic-martensitic P91 steel, austenitic stainless steel 316L, Inconel 600 and high-purity nickel) to investigate the influence of the alloying elements (e.g. Fe, Cr, Ni contents) on the microstructure and corrosion performance of slurry aluminide coatings. Individual metallic samples were diffusion-coated with slurries containing Al microparticles and subsequently exposed to molten NaCl–KCl at 700 °C for 100 h under argon. The experimental observations indicate that the performance of the aluminide coatings is governed by the precipitation of secondary phases within the B2 aluminide matrix rather than its intrinsic Al concentration (where B2 refers to either FeAl, (Fe,Ni)Al or NiAl intermetallic compounds). Of those, Fe-rich aluminide coatings were found to be more resistant to molten chlorides than Ni-rich ones. This is attributed to the greater solubility of Cr in iron aluminides than in nickel aluminides, preventing the precipitation of Cr-rich intermetallic compounds and/or Cr-rich carbides within the B2 matrix. Cr-rich phases were selectively dissolved upon exposure leaving the coating matrix with void channels. According to residual coating thickness measurements, the following ranking with increasing corrosion resistance can be given for Al-slurry coated materials: Inconel 600 |
doi_str_mv | 10.1016/j.solmat.2021.110974 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04463443v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927024821000180</els_id><sourcerecordid>3113808961</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-6d6322865e9ce2d3fdccd1d5b933ff3efaffa7c4082103907be4fcf9d43a1ecf3</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOI6-gYuAKxetuU3bbISh6Iw46EbXIZOLprTNmLQDs_MdfEOfxJaKS1cHDt__c84HwCVGKUY4u6nS6OtGdilBBKcYI56zIzDDRc4TSnlxDGaIkzxBhBWn4CzGCiFEMspmYFX6EHx0voU7E6wPjWyVgd7CWPchHKCs-8a1ThuovOxc-xaha2Hj68608EmW9ffn12NZn4MTK-toLn7nHLze372U62TzvHool5tE0azokkxnlJAiWxiuDNHUaqU01ostp9Raaqy0VuaKoYJgRDnKt4ZZZblmVGKjLJ2D66n3XdZiF1wjw0F46cR6uRHjDjE2PMboHg_s1cTugv_oTexE5fvQDucJijEtUMGzkWITpQYPMRj7V4uRGPWKSkx6xahXTHqH2O0UM8O3e2eCiMqZwZ12wahOaO_-L_gBJoKGIw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3113808961</pqid></control><display><type>article</type><title>Corrosion performance of slurry aluminide coatings in molten NaCl–KCl</title><source>Elsevier ScienceDirect Journals</source><creator>Grégoire, B. ; Oskay, C. ; Meißner, T.M. ; Galetz, M.C.</creator><creatorcontrib>Grégoire, B. ; Oskay, C. ; Meißner, T.M. ; Galetz, M.C.</creatorcontrib><description>The corrosion performance of water-based slurry aluminide coatings elaborated on iron- and nickel-based materials is investigated in molten chlorides as candidate heat transfer fluids (HTF) for thermal energy storage (TES) in third generation concentrated solar power (CSP) plants. This work presents a screening of four different materials (ferritic-martensitic P91 steel, austenitic stainless steel 316L, Inconel 600 and high-purity nickel) to investigate the influence of the alloying elements (e.g. Fe, Cr, Ni contents) on the microstructure and corrosion performance of slurry aluminide coatings. Individual metallic samples were diffusion-coated with slurries containing Al microparticles and subsequently exposed to molten NaCl–KCl at 700 °C for 100 h under argon. The experimental observations indicate that the performance of the aluminide coatings is governed by the precipitation of secondary phases within the B2 aluminide matrix rather than its intrinsic Al concentration (where B2 refers to either FeAl, (Fe,Ni)Al or NiAl intermetallic compounds). Of those, Fe-rich aluminide coatings were found to be more resistant to molten chlorides than Ni-rich ones. This is attributed to the greater solubility of Cr in iron aluminides than in nickel aluminides, preventing the precipitation of Cr-rich intermetallic compounds and/or Cr-rich carbides within the B2 matrix. Cr-rich phases were selectively dissolved upon exposure leaving the coating matrix with void channels. According to residual coating thickness measurements, the following ranking with increasing corrosion resistance can be given for Al-slurry coated materials: Inconel 600 < high-purity nickel < austenitic stainless steel 316L < ferritic-martensitic P91 steel.
[Display omitted]
•Slurry aluminide coatings successfully produced on four different substrates.•Coating performance linked to phase transformation and secondary phase precipitation.•Intergranular attack related to metallurgical heterogeneities of the coatings.•Fe-rich aluminide coatings more resistant than Ni-rich ones by increased Cr solubility.•Galvanic corrosion process of β-NiAl is proposed.</description><identifier>ISSN: 0927-0248</identifier><identifier>EISSN: 1879-3398</identifier><identifier>DOI: 10.1016/j.solmat.2021.110974</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Al-slurry ; Alloying elements ; Aluminide coatings ; Aluminum ; Argon ; Austenitic stainless steels ; Chemical Sciences ; Chloride resistance ; Chromium ; Chromium molybdenum steels ; Coatings ; Concentrated solar power (CSP) ; Corrosion ; Corrosion resistance ; Diffusion coating ; Diffusion coatings ; Energy storage ; Engineering Sciences ; Ferritic stainless steels ; Heat transfer ; Inorganic chemistry ; Intermetallic compounds ; Iron ; Iron aluminides ; Iron- and nickel-based materials ; Martensitic stainless steels ; Materials ; Microparticles ; Molten chlorides ; Nickel ; Nickel aluminides ; Nickel base alloys ; Nickel compounds ; Potassium chloride ; Power plants ; Purity ; Slurries ; Sodium chloride ; Solar power ; Stainless steel ; Superalloys ; Thermal energy ; Thickness measurement</subject><ispartof>Solar energy materials and solar cells, 2021-05, Vol.223, p.110974, Article 110974</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier BV May 2021</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-6d6322865e9ce2d3fdccd1d5b933ff3efaffa7c4082103907be4fcf9d43a1ecf3</citedby><cites>FETCH-LOGICAL-c368t-6d6322865e9ce2d3fdccd1d5b933ff3efaffa7c4082103907be4fcf9d43a1ecf3</cites><orcidid>0000-0001-6847-2053</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0927024821000180$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://univ-rochelle.hal.science/hal-04463443$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Grégoire, B.</creatorcontrib><creatorcontrib>Oskay, C.</creatorcontrib><creatorcontrib>Meißner, T.M.</creatorcontrib><creatorcontrib>Galetz, M.C.</creatorcontrib><title>Corrosion performance of slurry aluminide coatings in molten NaCl–KCl</title><title>Solar energy materials and solar cells</title><description>The corrosion performance of water-based slurry aluminide coatings elaborated on iron- and nickel-based materials is investigated in molten chlorides as candidate heat transfer fluids (HTF) for thermal energy storage (TES) in third generation concentrated solar power (CSP) plants. This work presents a screening of four different materials (ferritic-martensitic P91 steel, austenitic stainless steel 316L, Inconel 600 and high-purity nickel) to investigate the influence of the alloying elements (e.g. Fe, Cr, Ni contents) on the microstructure and corrosion performance of slurry aluminide coatings. Individual metallic samples were diffusion-coated with slurries containing Al microparticles and subsequently exposed to molten NaCl–KCl at 700 °C for 100 h under argon. The experimental observations indicate that the performance of the aluminide coatings is governed by the precipitation of secondary phases within the B2 aluminide matrix rather than its intrinsic Al concentration (where B2 refers to either FeAl, (Fe,Ni)Al or NiAl intermetallic compounds). Of those, Fe-rich aluminide coatings were found to be more resistant to molten chlorides than Ni-rich ones. This is attributed to the greater solubility of Cr in iron aluminides than in nickel aluminides, preventing the precipitation of Cr-rich intermetallic compounds and/or Cr-rich carbides within the B2 matrix. Cr-rich phases were selectively dissolved upon exposure leaving the coating matrix with void channels. According to residual coating thickness measurements, the following ranking with increasing corrosion resistance can be given for Al-slurry coated materials: Inconel 600 < high-purity nickel < austenitic stainless steel 316L < ferritic-martensitic P91 steel.
[Display omitted]
•Slurry aluminide coatings successfully produced on four different substrates.•Coating performance linked to phase transformation and secondary phase precipitation.•Intergranular attack related to metallurgical heterogeneities of the coatings.•Fe-rich aluminide coatings more resistant than Ni-rich ones by increased Cr solubility.•Galvanic corrosion process of β-NiAl is proposed.</description><subject>Al-slurry</subject><subject>Alloying elements</subject><subject>Aluminide coatings</subject><subject>Aluminum</subject><subject>Argon</subject><subject>Austenitic stainless steels</subject><subject>Chemical Sciences</subject><subject>Chloride resistance</subject><subject>Chromium</subject><subject>Chromium molybdenum steels</subject><subject>Coatings</subject><subject>Concentrated solar power (CSP)</subject><subject>Corrosion</subject><subject>Corrosion resistance</subject><subject>Diffusion coating</subject><subject>Diffusion coatings</subject><subject>Energy storage</subject><subject>Engineering Sciences</subject><subject>Ferritic stainless steels</subject><subject>Heat transfer</subject><subject>Inorganic chemistry</subject><subject>Intermetallic compounds</subject><subject>Iron</subject><subject>Iron aluminides</subject><subject>Iron- and nickel-based materials</subject><subject>Martensitic stainless steels</subject><subject>Materials</subject><subject>Microparticles</subject><subject>Molten chlorides</subject><subject>Nickel</subject><subject>Nickel aluminides</subject><subject>Nickel base alloys</subject><subject>Nickel compounds</subject><subject>Potassium chloride</subject><subject>Power plants</subject><subject>Purity</subject><subject>Slurries</subject><subject>Sodium chloride</subject><subject>Solar power</subject><subject>Stainless steel</subject><subject>Superalloys</subject><subject>Thermal energy</subject><subject>Thickness measurement</subject><issn>0927-0248</issn><issn>1879-3398</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUhoMoOI6-gYuAKxetuU3bbISh6Iw46EbXIZOLprTNmLQDs_MdfEOfxJaKS1cHDt__c84HwCVGKUY4u6nS6OtGdilBBKcYI56zIzDDRc4TSnlxDGaIkzxBhBWn4CzGCiFEMspmYFX6EHx0voU7E6wPjWyVgd7CWPchHKCs-8a1ThuovOxc-xaha2Hj68608EmW9ffn12NZn4MTK-toLn7nHLze372U62TzvHool5tE0azokkxnlJAiWxiuDNHUaqU01ostp9Raaqy0VuaKoYJgRDnKt4ZZZblmVGKjLJ2D66n3XdZiF1wjw0F46cR6uRHjDjE2PMboHg_s1cTugv_oTexE5fvQDucJijEtUMGzkWITpQYPMRj7V4uRGPWKSkx6xahXTHqH2O0UM8O3e2eCiMqZwZ12wahOaO_-L_gBJoKGIw</recordid><startdate>202105</startdate><enddate>202105</enddate><creator>Grégoire, B.</creator><creator>Oskay, C.</creator><creator>Meißner, T.M.</creator><creator>Galetz, M.C.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-6847-2053</orcidid></search><sort><creationdate>202105</creationdate><title>Corrosion performance of slurry aluminide coatings in molten NaCl–KCl</title><author>Grégoire, B. ; Oskay, C. ; Meißner, T.M. ; Galetz, M.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-6d6322865e9ce2d3fdccd1d5b933ff3efaffa7c4082103907be4fcf9d43a1ecf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Al-slurry</topic><topic>Alloying elements</topic><topic>Aluminide coatings</topic><topic>Aluminum</topic><topic>Argon</topic><topic>Austenitic stainless steels</topic><topic>Chemical Sciences</topic><topic>Chloride resistance</topic><topic>Chromium</topic><topic>Chromium molybdenum steels</topic><topic>Coatings</topic><topic>Concentrated solar power (CSP)</topic><topic>Corrosion</topic><topic>Corrosion resistance</topic><topic>Diffusion coating</topic><topic>Diffusion coatings</topic><topic>Energy storage</topic><topic>Engineering Sciences</topic><topic>Ferritic stainless steels</topic><topic>Heat transfer</topic><topic>Inorganic chemistry</topic><topic>Intermetallic compounds</topic><topic>Iron</topic><topic>Iron aluminides</topic><topic>Iron- and nickel-based materials</topic><topic>Martensitic stainless steels</topic><topic>Materials</topic><topic>Microparticles</topic><topic>Molten chlorides</topic><topic>Nickel</topic><topic>Nickel aluminides</topic><topic>Nickel base alloys</topic><topic>Nickel compounds</topic><topic>Potassium chloride</topic><topic>Power plants</topic><topic>Purity</topic><topic>Slurries</topic><topic>Sodium chloride</topic><topic>Solar power</topic><topic>Stainless steel</topic><topic>Superalloys</topic><topic>Thermal energy</topic><topic>Thickness measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grégoire, B.</creatorcontrib><creatorcontrib>Oskay, C.</creatorcontrib><creatorcontrib>Meißner, T.M.</creatorcontrib><creatorcontrib>Galetz, M.C.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Solar energy materials and solar cells</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grégoire, B.</au><au>Oskay, C.</au><au>Meißner, T.M.</au><au>Galetz, M.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Corrosion performance of slurry aluminide coatings in molten NaCl–KCl</atitle><jtitle>Solar energy materials and solar cells</jtitle><date>2021-05</date><risdate>2021</risdate><volume>223</volume><spage>110974</spage><pages>110974-</pages><artnum>110974</artnum><issn>0927-0248</issn><eissn>1879-3398</eissn><abstract>The corrosion performance of water-based slurry aluminide coatings elaborated on iron- and nickel-based materials is investigated in molten chlorides as candidate heat transfer fluids (HTF) for thermal energy storage (TES) in third generation concentrated solar power (CSP) plants. This work presents a screening of four different materials (ferritic-martensitic P91 steel, austenitic stainless steel 316L, Inconel 600 and high-purity nickel) to investigate the influence of the alloying elements (e.g. Fe, Cr, Ni contents) on the microstructure and corrosion performance of slurry aluminide coatings. Individual metallic samples were diffusion-coated with slurries containing Al microparticles and subsequently exposed to molten NaCl–KCl at 700 °C for 100 h under argon. The experimental observations indicate that the performance of the aluminide coatings is governed by the precipitation of secondary phases within the B2 aluminide matrix rather than its intrinsic Al concentration (where B2 refers to either FeAl, (Fe,Ni)Al or NiAl intermetallic compounds). Of those, Fe-rich aluminide coatings were found to be more resistant to molten chlorides than Ni-rich ones. This is attributed to the greater solubility of Cr in iron aluminides than in nickel aluminides, preventing the precipitation of Cr-rich intermetallic compounds and/or Cr-rich carbides within the B2 matrix. Cr-rich phases were selectively dissolved upon exposure leaving the coating matrix with void channels. According to residual coating thickness measurements, the following ranking with increasing corrosion resistance can be given for Al-slurry coated materials: Inconel 600 < high-purity nickel < austenitic stainless steel 316L < ferritic-martensitic P91 steel.
[Display omitted]
•Slurry aluminide coatings successfully produced on four different substrates.•Coating performance linked to phase transformation and secondary phase precipitation.•Intergranular attack related to metallurgical heterogeneities of the coatings.•Fe-rich aluminide coatings more resistant than Ni-rich ones by increased Cr solubility.•Galvanic corrosion process of β-NiAl is proposed.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.solmat.2021.110974</doi><orcidid>https://orcid.org/0000-0001-6847-2053</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0927-0248 |
ispartof | Solar energy materials and solar cells, 2021-05, Vol.223, p.110974, Article 110974 |
issn | 0927-0248 1879-3398 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04463443v1 |
source | Elsevier ScienceDirect Journals |
subjects | Al-slurry Alloying elements Aluminide coatings Aluminum Argon Austenitic stainless steels Chemical Sciences Chloride resistance Chromium Chromium molybdenum steels Coatings Concentrated solar power (CSP) Corrosion Corrosion resistance Diffusion coating Diffusion coatings Energy storage Engineering Sciences Ferritic stainless steels Heat transfer Inorganic chemistry Intermetallic compounds Iron Iron aluminides Iron- and nickel-based materials Martensitic stainless steels Materials Microparticles Molten chlorides Nickel Nickel aluminides Nickel base alloys Nickel compounds Potassium chloride Power plants Purity Slurries Sodium chloride Solar power Stainless steel Superalloys Thermal energy Thickness measurement |
title | Corrosion performance of slurry aluminide coatings in molten NaCl–KCl |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T08%3A58%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Corrosion%20performance%20of%20slurry%20aluminide%20coatings%20in%20molten%20NaCl%E2%80%93KCl&rft.jtitle=Solar%20energy%20materials%20and%20solar%20cells&rft.au=Gr%C3%A9goire,%20B.&rft.date=2021-05&rft.volume=223&rft.spage=110974&rft.pages=110974-&rft.artnum=110974&rft.issn=0927-0248&rft.eissn=1879-3398&rft_id=info:doi/10.1016/j.solmat.2021.110974&rft_dat=%3Cproquest_hal_p%3E3113808961%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3113808961&rft_id=info:pmid/&rft_els_id=S0927024821000180&rfr_iscdi=true |