Corrosion performance of slurry aluminide coatings in molten NaCl–KCl

The corrosion performance of water-based slurry aluminide coatings elaborated on iron- and nickel-based materials is investigated in molten chlorides as candidate heat transfer fluids (HTF) for thermal energy storage (TES) in third generation concentrated solar power (CSP) plants. This work presents...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solar energy materials and solar cells 2021-05, Vol.223, p.110974, Article 110974
Hauptverfasser: Grégoire, B., Oskay, C., Meißner, T.M., Galetz, M.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 110974
container_title Solar energy materials and solar cells
container_volume 223
creator Grégoire, B.
Oskay, C.
Meißner, T.M.
Galetz, M.C.
description The corrosion performance of water-based slurry aluminide coatings elaborated on iron- and nickel-based materials is investigated in molten chlorides as candidate heat transfer fluids (HTF) for thermal energy storage (TES) in third generation concentrated solar power (CSP) plants. This work presents a screening of four different materials (ferritic-martensitic P91 steel, austenitic stainless steel 316L, Inconel 600 and high-purity nickel) to investigate the influence of the alloying elements (e.g. Fe, Cr, Ni contents) on the microstructure and corrosion performance of slurry aluminide coatings. Individual metallic samples were diffusion-coated with slurries containing Al microparticles and subsequently exposed to molten NaCl–KCl at 700 °C for 100 h under argon. The experimental observations indicate that the performance of the aluminide coatings is governed by the precipitation of secondary phases within the B2 aluminide matrix rather than its intrinsic Al concentration (where B2 refers to either FeAl, (Fe,Ni)Al or NiAl intermetallic compounds). Of those, Fe-rich aluminide coatings were found to be more resistant to molten chlorides than Ni-rich ones. This is attributed to the greater solubility of Cr in iron aluminides than in nickel aluminides, preventing the precipitation of Cr-rich intermetallic compounds and/or Cr-rich carbides within the B2 matrix. Cr-rich phases were selectively dissolved upon exposure leaving the coating matrix with void channels. According to residual coating thickness measurements, the following ranking with increasing corrosion resistance can be given for Al-slurry coated materials: Inconel 600 
doi_str_mv 10.1016/j.solmat.2021.110974
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04463443v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927024821000180</els_id><sourcerecordid>3113808961</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-6d6322865e9ce2d3fdccd1d5b933ff3efaffa7c4082103907be4fcf9d43a1ecf3</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOI6-gYuAKxetuU3bbISh6Iw46EbXIZOLprTNmLQDs_MdfEOfxJaKS1cHDt__c84HwCVGKUY4u6nS6OtGdilBBKcYI56zIzDDRc4TSnlxDGaIkzxBhBWn4CzGCiFEMspmYFX6EHx0voU7E6wPjWyVgd7CWPchHKCs-8a1ThuovOxc-xaha2Hj68608EmW9ffn12NZn4MTK-toLn7nHLze372U62TzvHool5tE0azokkxnlJAiWxiuDNHUaqU01ostp9Raaqy0VuaKoYJgRDnKt4ZZZblmVGKjLJ2D66n3XdZiF1wjw0F46cR6uRHjDjE2PMboHg_s1cTugv_oTexE5fvQDucJijEtUMGzkWITpQYPMRj7V4uRGPWKSkx6xahXTHqH2O0UM8O3e2eCiMqZwZ12wahOaO_-L_gBJoKGIw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3113808961</pqid></control><display><type>article</type><title>Corrosion performance of slurry aluminide coatings in molten NaCl–KCl</title><source>Elsevier ScienceDirect Journals</source><creator>Grégoire, B. ; Oskay, C. ; Meißner, T.M. ; Galetz, M.C.</creator><creatorcontrib>Grégoire, B. ; Oskay, C. ; Meißner, T.M. ; Galetz, M.C.</creatorcontrib><description>The corrosion performance of water-based slurry aluminide coatings elaborated on iron- and nickel-based materials is investigated in molten chlorides as candidate heat transfer fluids (HTF) for thermal energy storage (TES) in third generation concentrated solar power (CSP) plants. This work presents a screening of four different materials (ferritic-martensitic P91 steel, austenitic stainless steel 316L, Inconel 600 and high-purity nickel) to investigate the influence of the alloying elements (e.g. Fe, Cr, Ni contents) on the microstructure and corrosion performance of slurry aluminide coatings. Individual metallic samples were diffusion-coated with slurries containing Al microparticles and subsequently exposed to molten NaCl–KCl at 700 °C for 100 h under argon. The experimental observations indicate that the performance of the aluminide coatings is governed by the precipitation of secondary phases within the B2 aluminide matrix rather than its intrinsic Al concentration (where B2 refers to either FeAl, (Fe,Ni)Al or NiAl intermetallic compounds). Of those, Fe-rich aluminide coatings were found to be more resistant to molten chlorides than Ni-rich ones. This is attributed to the greater solubility of Cr in iron aluminides than in nickel aluminides, preventing the precipitation of Cr-rich intermetallic compounds and/or Cr-rich carbides within the B2 matrix. Cr-rich phases were selectively dissolved upon exposure leaving the coating matrix with void channels. According to residual coating thickness measurements, the following ranking with increasing corrosion resistance can be given for Al-slurry coated materials: Inconel 600 &lt; high-purity nickel &lt; austenitic stainless steel 316L &lt; ferritic-martensitic P91 steel. [Display omitted] •Slurry aluminide coatings successfully produced on four different substrates.•Coating performance linked to phase transformation and secondary phase precipitation.•Intergranular attack related to metallurgical heterogeneities of the coatings.•Fe-rich aluminide coatings more resistant than Ni-rich ones by increased Cr solubility.•Galvanic corrosion process of β-NiAl is proposed.</description><identifier>ISSN: 0927-0248</identifier><identifier>EISSN: 1879-3398</identifier><identifier>DOI: 10.1016/j.solmat.2021.110974</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Al-slurry ; Alloying elements ; Aluminide coatings ; Aluminum ; Argon ; Austenitic stainless steels ; Chemical Sciences ; Chloride resistance ; Chromium ; Chromium molybdenum steels ; Coatings ; Concentrated solar power (CSP) ; Corrosion ; Corrosion resistance ; Diffusion coating ; Diffusion coatings ; Energy storage ; Engineering Sciences ; Ferritic stainless steels ; Heat transfer ; Inorganic chemistry ; Intermetallic compounds ; Iron ; Iron aluminides ; Iron- and nickel-based materials ; Martensitic stainless steels ; Materials ; Microparticles ; Molten chlorides ; Nickel ; Nickel aluminides ; Nickel base alloys ; Nickel compounds ; Potassium chloride ; Power plants ; Purity ; Slurries ; Sodium chloride ; Solar power ; Stainless steel ; Superalloys ; Thermal energy ; Thickness measurement</subject><ispartof>Solar energy materials and solar cells, 2021-05, Vol.223, p.110974, Article 110974</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier BV May 2021</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-6d6322865e9ce2d3fdccd1d5b933ff3efaffa7c4082103907be4fcf9d43a1ecf3</citedby><cites>FETCH-LOGICAL-c368t-6d6322865e9ce2d3fdccd1d5b933ff3efaffa7c4082103907be4fcf9d43a1ecf3</cites><orcidid>0000-0001-6847-2053</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0927024821000180$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://univ-rochelle.hal.science/hal-04463443$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Grégoire, B.</creatorcontrib><creatorcontrib>Oskay, C.</creatorcontrib><creatorcontrib>Meißner, T.M.</creatorcontrib><creatorcontrib>Galetz, M.C.</creatorcontrib><title>Corrosion performance of slurry aluminide coatings in molten NaCl–KCl</title><title>Solar energy materials and solar cells</title><description>The corrosion performance of water-based slurry aluminide coatings elaborated on iron- and nickel-based materials is investigated in molten chlorides as candidate heat transfer fluids (HTF) for thermal energy storage (TES) in third generation concentrated solar power (CSP) plants. This work presents a screening of four different materials (ferritic-martensitic P91 steel, austenitic stainless steel 316L, Inconel 600 and high-purity nickel) to investigate the influence of the alloying elements (e.g. Fe, Cr, Ni contents) on the microstructure and corrosion performance of slurry aluminide coatings. Individual metallic samples were diffusion-coated with slurries containing Al microparticles and subsequently exposed to molten NaCl–KCl at 700 °C for 100 h under argon. The experimental observations indicate that the performance of the aluminide coatings is governed by the precipitation of secondary phases within the B2 aluminide matrix rather than its intrinsic Al concentration (where B2 refers to either FeAl, (Fe,Ni)Al or NiAl intermetallic compounds). Of those, Fe-rich aluminide coatings were found to be more resistant to molten chlorides than Ni-rich ones. This is attributed to the greater solubility of Cr in iron aluminides than in nickel aluminides, preventing the precipitation of Cr-rich intermetallic compounds and/or Cr-rich carbides within the B2 matrix. Cr-rich phases were selectively dissolved upon exposure leaving the coating matrix with void channels. According to residual coating thickness measurements, the following ranking with increasing corrosion resistance can be given for Al-slurry coated materials: Inconel 600 &lt; high-purity nickel &lt; austenitic stainless steel 316L &lt; ferritic-martensitic P91 steel. [Display omitted] •Slurry aluminide coatings successfully produced on four different substrates.•Coating performance linked to phase transformation and secondary phase precipitation.•Intergranular attack related to metallurgical heterogeneities of the coatings.•Fe-rich aluminide coatings more resistant than Ni-rich ones by increased Cr solubility.•Galvanic corrosion process of β-NiAl is proposed.</description><subject>Al-slurry</subject><subject>Alloying elements</subject><subject>Aluminide coatings</subject><subject>Aluminum</subject><subject>Argon</subject><subject>Austenitic stainless steels</subject><subject>Chemical Sciences</subject><subject>Chloride resistance</subject><subject>Chromium</subject><subject>Chromium molybdenum steels</subject><subject>Coatings</subject><subject>Concentrated solar power (CSP)</subject><subject>Corrosion</subject><subject>Corrosion resistance</subject><subject>Diffusion coating</subject><subject>Diffusion coatings</subject><subject>Energy storage</subject><subject>Engineering Sciences</subject><subject>Ferritic stainless steels</subject><subject>Heat transfer</subject><subject>Inorganic chemistry</subject><subject>Intermetallic compounds</subject><subject>Iron</subject><subject>Iron aluminides</subject><subject>Iron- and nickel-based materials</subject><subject>Martensitic stainless steels</subject><subject>Materials</subject><subject>Microparticles</subject><subject>Molten chlorides</subject><subject>Nickel</subject><subject>Nickel aluminides</subject><subject>Nickel base alloys</subject><subject>Nickel compounds</subject><subject>Potassium chloride</subject><subject>Power plants</subject><subject>Purity</subject><subject>Slurries</subject><subject>Sodium chloride</subject><subject>Solar power</subject><subject>Stainless steel</subject><subject>Superalloys</subject><subject>Thermal energy</subject><subject>Thickness measurement</subject><issn>0927-0248</issn><issn>1879-3398</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUhoMoOI6-gYuAKxetuU3bbISh6Iw46EbXIZOLprTNmLQDs_MdfEOfxJaKS1cHDt__c84HwCVGKUY4u6nS6OtGdilBBKcYI56zIzDDRc4TSnlxDGaIkzxBhBWn4CzGCiFEMspmYFX6EHx0voU7E6wPjWyVgd7CWPchHKCs-8a1ThuovOxc-xaha2Hj68608EmW9ffn12NZn4MTK-toLn7nHLze372U62TzvHool5tE0azokkxnlJAiWxiuDNHUaqU01ostp9Raaqy0VuaKoYJgRDnKt4ZZZblmVGKjLJ2D66n3XdZiF1wjw0F46cR6uRHjDjE2PMboHg_s1cTugv_oTexE5fvQDucJijEtUMGzkWITpQYPMRj7V4uRGPWKSkx6xahXTHqH2O0UM8O3e2eCiMqZwZ12wahOaO_-L_gBJoKGIw</recordid><startdate>202105</startdate><enddate>202105</enddate><creator>Grégoire, B.</creator><creator>Oskay, C.</creator><creator>Meißner, T.M.</creator><creator>Galetz, M.C.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-6847-2053</orcidid></search><sort><creationdate>202105</creationdate><title>Corrosion performance of slurry aluminide coatings in molten NaCl–KCl</title><author>Grégoire, B. ; Oskay, C. ; Meißner, T.M. ; Galetz, M.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-6d6322865e9ce2d3fdccd1d5b933ff3efaffa7c4082103907be4fcf9d43a1ecf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Al-slurry</topic><topic>Alloying elements</topic><topic>Aluminide coatings</topic><topic>Aluminum</topic><topic>Argon</topic><topic>Austenitic stainless steels</topic><topic>Chemical Sciences</topic><topic>Chloride resistance</topic><topic>Chromium</topic><topic>Chromium molybdenum steels</topic><topic>Coatings</topic><topic>Concentrated solar power (CSP)</topic><topic>Corrosion</topic><topic>Corrosion resistance</topic><topic>Diffusion coating</topic><topic>Diffusion coatings</topic><topic>Energy storage</topic><topic>Engineering Sciences</topic><topic>Ferritic stainless steels</topic><topic>Heat transfer</topic><topic>Inorganic chemistry</topic><topic>Intermetallic compounds</topic><topic>Iron</topic><topic>Iron aluminides</topic><topic>Iron- and nickel-based materials</topic><topic>Martensitic stainless steels</topic><topic>Materials</topic><topic>Microparticles</topic><topic>Molten chlorides</topic><topic>Nickel</topic><topic>Nickel aluminides</topic><topic>Nickel base alloys</topic><topic>Nickel compounds</topic><topic>Potassium chloride</topic><topic>Power plants</topic><topic>Purity</topic><topic>Slurries</topic><topic>Sodium chloride</topic><topic>Solar power</topic><topic>Stainless steel</topic><topic>Superalloys</topic><topic>Thermal energy</topic><topic>Thickness measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grégoire, B.</creatorcontrib><creatorcontrib>Oskay, C.</creatorcontrib><creatorcontrib>Meißner, T.M.</creatorcontrib><creatorcontrib>Galetz, M.C.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Solar energy materials and solar cells</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grégoire, B.</au><au>Oskay, C.</au><au>Meißner, T.M.</au><au>Galetz, M.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Corrosion performance of slurry aluminide coatings in molten NaCl–KCl</atitle><jtitle>Solar energy materials and solar cells</jtitle><date>2021-05</date><risdate>2021</risdate><volume>223</volume><spage>110974</spage><pages>110974-</pages><artnum>110974</artnum><issn>0927-0248</issn><eissn>1879-3398</eissn><abstract>The corrosion performance of water-based slurry aluminide coatings elaborated on iron- and nickel-based materials is investigated in molten chlorides as candidate heat transfer fluids (HTF) for thermal energy storage (TES) in third generation concentrated solar power (CSP) plants. This work presents a screening of four different materials (ferritic-martensitic P91 steel, austenitic stainless steel 316L, Inconel 600 and high-purity nickel) to investigate the influence of the alloying elements (e.g. Fe, Cr, Ni contents) on the microstructure and corrosion performance of slurry aluminide coatings. Individual metallic samples were diffusion-coated with slurries containing Al microparticles and subsequently exposed to molten NaCl–KCl at 700 °C for 100 h under argon. The experimental observations indicate that the performance of the aluminide coatings is governed by the precipitation of secondary phases within the B2 aluminide matrix rather than its intrinsic Al concentration (where B2 refers to either FeAl, (Fe,Ni)Al or NiAl intermetallic compounds). Of those, Fe-rich aluminide coatings were found to be more resistant to molten chlorides than Ni-rich ones. This is attributed to the greater solubility of Cr in iron aluminides than in nickel aluminides, preventing the precipitation of Cr-rich intermetallic compounds and/or Cr-rich carbides within the B2 matrix. Cr-rich phases were selectively dissolved upon exposure leaving the coating matrix with void channels. According to residual coating thickness measurements, the following ranking with increasing corrosion resistance can be given for Al-slurry coated materials: Inconel 600 &lt; high-purity nickel &lt; austenitic stainless steel 316L &lt; ferritic-martensitic P91 steel. [Display omitted] •Slurry aluminide coatings successfully produced on four different substrates.•Coating performance linked to phase transformation and secondary phase precipitation.•Intergranular attack related to metallurgical heterogeneities of the coatings.•Fe-rich aluminide coatings more resistant than Ni-rich ones by increased Cr solubility.•Galvanic corrosion process of β-NiAl is proposed.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.solmat.2021.110974</doi><orcidid>https://orcid.org/0000-0001-6847-2053</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0927-0248
ispartof Solar energy materials and solar cells, 2021-05, Vol.223, p.110974, Article 110974
issn 0927-0248
1879-3398
language eng
recordid cdi_hal_primary_oai_HAL_hal_04463443v1
source Elsevier ScienceDirect Journals
subjects Al-slurry
Alloying elements
Aluminide coatings
Aluminum
Argon
Austenitic stainless steels
Chemical Sciences
Chloride resistance
Chromium
Chromium molybdenum steels
Coatings
Concentrated solar power (CSP)
Corrosion
Corrosion resistance
Diffusion coating
Diffusion coatings
Energy storage
Engineering Sciences
Ferritic stainless steels
Heat transfer
Inorganic chemistry
Intermetallic compounds
Iron
Iron aluminides
Iron- and nickel-based materials
Martensitic stainless steels
Materials
Microparticles
Molten chlorides
Nickel
Nickel aluminides
Nickel base alloys
Nickel compounds
Potassium chloride
Power plants
Purity
Slurries
Sodium chloride
Solar power
Stainless steel
Superalloys
Thermal energy
Thickness measurement
title Corrosion performance of slurry aluminide coatings in molten NaCl–KCl
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T08%3A58%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Corrosion%20performance%20of%20slurry%20aluminide%20coatings%20in%20molten%20NaCl%E2%80%93KCl&rft.jtitle=Solar%20energy%20materials%20and%20solar%20cells&rft.au=Gr%C3%A9goire,%20B.&rft.date=2021-05&rft.volume=223&rft.spage=110974&rft.pages=110974-&rft.artnum=110974&rft.issn=0927-0248&rft.eissn=1879-3398&rft_id=info:doi/10.1016/j.solmat.2021.110974&rft_dat=%3Cproquest_hal_p%3E3113808961%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3113808961&rft_id=info:pmid/&rft_els_id=S0927024821000180&rfr_iscdi=true