Parameter identifiability and input–output equations
Structural parameter identifiability is a property of a differential model with parameters that allows for the parameters to be determined from the model equations in the absence of noise. One of the standard approaches to assessing this problem is via input–output equations and, in particular, char...
Gespeichert in:
Veröffentlicht in: | Applicable algebra in engineering, communication and computing communication and computing, 2023-03, Vol.34 (2), p.165-182 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 182 |
---|---|
container_issue | 2 |
container_start_page | 165 |
container_title | Applicable algebra in engineering, communication and computing |
container_volume | 34 |
creator | Ovchinnikov, Alexey Pogudin, Gleb Thompson, Peter |
description | Structural parameter identifiability is a property of a differential model with parameters that allows for the parameters to be determined from the model equations in the absence of noise. One of the standard approaches to assessing this problem is via input–output equations and, in particular, characteristic sets of differential ideals. The precise relation between identifiability and input–output identifiability is subtle. The goal of this note is to clarify this relation. The main results are:
identifiability implies input–output identifiability;
these notions coincide if the model does not have rational first integrals;
the field of input–output identifiable functions is generated by the coefficients of a “minimal” characteristic set of the corresponding differential ideal.
We expect that some of these facts may be known to the experts in the area, but we are not aware of any articles in which these facts are stated precisely and rigorously proved. |
doi_str_mv | 10.1007/s00200-021-00486-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04460895v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2778648498</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-bebb344ca6cd2c8d1d8598e3c5d1d68e43bbb0080b6c199152558dd0a143c4763</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKsv4GrAlYvozc9kkmUpaoWCLnQdMplUU9qZNskI3fkOvqFPYuqI7lzdw-U7h8NB6JzAFQGoriMABcBACQbgUmB5gEaEM4pBUHqIRqCYxIRW6hidxLgEAKF4NULi0QSzdsmFwjeuTX7hTe1XPu0K0zaFbzd9-nz_6PqUReG2vUm-a-MpOlqYVXRnP3eMnm9vnqYzPH-4u59O5tiykiVcu7pmnFsjbEOtbEgjSyUds2WWQjrO6roGkFALS5QiJS1L2TRgcnXLK8HG6HLIfTUrvQl-bcJOd8br2WSu9z_gXIBU5RvJ7MXAbkK37V1Metn1oc31NK0qKbjkSmaKDpQNXYzBLX5jCej9lnrYUuct9feWem9igylmuH1x4S_6H9cXgbh2wg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2778648498</pqid></control><display><type>article</type><title>Parameter identifiability and input–output equations</title><source>SpringerLink Journals</source><creator>Ovchinnikov, Alexey ; Pogudin, Gleb ; Thompson, Peter</creator><creatorcontrib>Ovchinnikov, Alexey ; Pogudin, Gleb ; Thompson, Peter</creatorcontrib><description>Structural parameter identifiability is a property of a differential model with parameters that allows for the parameters to be determined from the model equations in the absence of noise. One of the standard approaches to assessing this problem is via input–output equations and, in particular, characteristic sets of differential ideals. The precise relation between identifiability and input–output identifiability is subtle. The goal of this note is to clarify this relation. The main results are:
identifiability implies input–output identifiability;
these notions coincide if the model does not have rational first integrals;
the field of input–output identifiable functions is generated by the coefficients of a “minimal” characteristic set of the corresponding differential ideal.
We expect that some of these facts may be known to the experts in the area, but we are not aware of any articles in which these facts are stated precisely and rigorously proved.</description><identifier>ISSN: 0938-1279</identifier><identifier>EISSN: 1432-0622</identifier><identifier>DOI: 10.1007/s00200-021-00486-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Artificial Intelligence ; Computer Hardware ; Computer Science ; Differential equations ; Mathematical models ; Mathematics ; Original Paper ; Parameter identification ; Symbolic and Algebraic Manipulation ; Theory of Computation</subject><ispartof>Applicable algebra in engineering, communication and computing, 2023-03, Vol.34 (2), p.165-182</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-bebb344ca6cd2c8d1d8598e3c5d1d68e43bbb0080b6c199152558dd0a143c4763</citedby><cites>FETCH-LOGICAL-c353t-bebb344ca6cd2c8d1d8598e3c5d1d68e43bbb0080b6c199152558dd0a143c4763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00200-021-00486-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00200-021-00486-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04460895$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ovchinnikov, Alexey</creatorcontrib><creatorcontrib>Pogudin, Gleb</creatorcontrib><creatorcontrib>Thompson, Peter</creatorcontrib><title>Parameter identifiability and input–output equations</title><title>Applicable algebra in engineering, communication and computing</title><addtitle>AAECC</addtitle><description>Structural parameter identifiability is a property of a differential model with parameters that allows for the parameters to be determined from the model equations in the absence of noise. One of the standard approaches to assessing this problem is via input–output equations and, in particular, characteristic sets of differential ideals. The precise relation between identifiability and input–output identifiability is subtle. The goal of this note is to clarify this relation. The main results are:
identifiability implies input–output identifiability;
these notions coincide if the model does not have rational first integrals;
the field of input–output identifiable functions is generated by the coefficients of a “minimal” characteristic set of the corresponding differential ideal.
We expect that some of these facts may be known to the experts in the area, but we are not aware of any articles in which these facts are stated precisely and rigorously proved.</description><subject>Artificial Intelligence</subject><subject>Computer Hardware</subject><subject>Computer Science</subject><subject>Differential equations</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Original Paper</subject><subject>Parameter identification</subject><subject>Symbolic and Algebraic Manipulation</subject><subject>Theory of Computation</subject><issn>0938-1279</issn><issn>1432-0622</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEUhYMoWKsv4GrAlYvozc9kkmUpaoWCLnQdMplUU9qZNskI3fkOvqFPYuqI7lzdw-U7h8NB6JzAFQGoriMABcBACQbgUmB5gEaEM4pBUHqIRqCYxIRW6hidxLgEAKF4NULi0QSzdsmFwjeuTX7hTe1XPu0K0zaFbzd9-nz_6PqUReG2vUm-a-MpOlqYVXRnP3eMnm9vnqYzPH-4u59O5tiykiVcu7pmnFsjbEOtbEgjSyUds2WWQjrO6roGkFALS5QiJS1L2TRgcnXLK8HG6HLIfTUrvQl-bcJOd8br2WSu9z_gXIBU5RvJ7MXAbkK37V1Metn1oc31NK0qKbjkSmaKDpQNXYzBLX5jCej9lnrYUuct9feWem9igylmuH1x4S_6H9cXgbh2wg</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Ovchinnikov, Alexey</creator><creator>Pogudin, Gleb</creator><creator>Thompson, Peter</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20230301</creationdate><title>Parameter identifiability and input–output equations</title><author>Ovchinnikov, Alexey ; Pogudin, Gleb ; Thompson, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-bebb344ca6cd2c8d1d8598e3c5d1d68e43bbb0080b6c199152558dd0a143c4763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial Intelligence</topic><topic>Computer Hardware</topic><topic>Computer Science</topic><topic>Differential equations</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Original Paper</topic><topic>Parameter identification</topic><topic>Symbolic and Algebraic Manipulation</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ovchinnikov, Alexey</creatorcontrib><creatorcontrib>Pogudin, Gleb</creatorcontrib><creatorcontrib>Thompson, Peter</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Applicable algebra in engineering, communication and computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ovchinnikov, Alexey</au><au>Pogudin, Gleb</au><au>Thompson, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parameter identifiability and input–output equations</atitle><jtitle>Applicable algebra in engineering, communication and computing</jtitle><stitle>AAECC</stitle><date>2023-03-01</date><risdate>2023</risdate><volume>34</volume><issue>2</issue><spage>165</spage><epage>182</epage><pages>165-182</pages><issn>0938-1279</issn><eissn>1432-0622</eissn><abstract>Structural parameter identifiability is a property of a differential model with parameters that allows for the parameters to be determined from the model equations in the absence of noise. One of the standard approaches to assessing this problem is via input–output equations and, in particular, characteristic sets of differential ideals. The precise relation between identifiability and input–output identifiability is subtle. The goal of this note is to clarify this relation. The main results are:
identifiability implies input–output identifiability;
these notions coincide if the model does not have rational first integrals;
the field of input–output identifiable functions is generated by the coefficients of a “minimal” characteristic set of the corresponding differential ideal.
We expect that some of these facts may be known to the experts in the area, but we are not aware of any articles in which these facts are stated precisely and rigorously proved.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00200-021-00486-8</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0938-1279 |
ispartof | Applicable algebra in engineering, communication and computing, 2023-03, Vol.34 (2), p.165-182 |
issn | 0938-1279 1432-0622 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04460895v1 |
source | SpringerLink Journals |
subjects | Artificial Intelligence Computer Hardware Computer Science Differential equations Mathematical models Mathematics Original Paper Parameter identification Symbolic and Algebraic Manipulation Theory of Computation |
title | Parameter identifiability and input–output equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T02%3A11%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parameter%20identifiability%20and%20input%E2%80%93output%20equations&rft.jtitle=Applicable%20algebra%20in%20engineering,%20communication%20and%20computing&rft.au=Ovchinnikov,%20Alexey&rft.date=2023-03-01&rft.volume=34&rft.issue=2&rft.spage=165&rft.epage=182&rft.pages=165-182&rft.issn=0938-1279&rft.eissn=1432-0622&rft_id=info:doi/10.1007/s00200-021-00486-8&rft_dat=%3Cproquest_hal_p%3E2778648498%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2778648498&rft_id=info:pmid/&rfr_iscdi=true |