Parameter identifiability and input–output equations

Structural parameter identifiability is a property of a differential model with parameters that allows for the parameters to be determined from the model equations in the absence of noise. One of the standard approaches to assessing this problem is via input–output equations and, in particular, char...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applicable algebra in engineering, communication and computing communication and computing, 2023-03, Vol.34 (2), p.165-182
Hauptverfasser: Ovchinnikov, Alexey, Pogudin, Gleb, Thompson, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 182
container_issue 2
container_start_page 165
container_title Applicable algebra in engineering, communication and computing
container_volume 34
creator Ovchinnikov, Alexey
Pogudin, Gleb
Thompson, Peter
description Structural parameter identifiability is a property of a differential model with parameters that allows for the parameters to be determined from the model equations in the absence of noise. One of the standard approaches to assessing this problem is via input–output equations and, in particular, characteristic sets of differential ideals. The precise relation between identifiability and input–output identifiability is subtle. The goal of this note is to clarify this relation. The main results are: identifiability implies input–output identifiability; these notions coincide if the model does not have rational first integrals; the field of input–output identifiable functions is generated by the coefficients of a “minimal” characteristic set of the corresponding differential ideal. We expect that some of these facts may be known to the experts in the area, but we are not aware of any articles in which these facts are stated precisely and rigorously proved.
doi_str_mv 10.1007/s00200-021-00486-8
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04460895v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2778648498</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-bebb344ca6cd2c8d1d8598e3c5d1d68e43bbb0080b6c199152558dd0a143c4763</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKsv4GrAlYvozc9kkmUpaoWCLnQdMplUU9qZNskI3fkOvqFPYuqI7lzdw-U7h8NB6JzAFQGoriMABcBACQbgUmB5gEaEM4pBUHqIRqCYxIRW6hidxLgEAKF4NULi0QSzdsmFwjeuTX7hTe1XPu0K0zaFbzd9-nz_6PqUReG2vUm-a-MpOlqYVXRnP3eMnm9vnqYzPH-4u59O5tiykiVcu7pmnFsjbEOtbEgjSyUds2WWQjrO6roGkFALS5QiJS1L2TRgcnXLK8HG6HLIfTUrvQl-bcJOd8br2WSu9z_gXIBU5RvJ7MXAbkK37V1Metn1oc31NK0qKbjkSmaKDpQNXYzBLX5jCej9lnrYUuct9feWem9igylmuH1x4S_6H9cXgbh2wg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2778648498</pqid></control><display><type>article</type><title>Parameter identifiability and input–output equations</title><source>SpringerLink Journals</source><creator>Ovchinnikov, Alexey ; Pogudin, Gleb ; Thompson, Peter</creator><creatorcontrib>Ovchinnikov, Alexey ; Pogudin, Gleb ; Thompson, Peter</creatorcontrib><description>Structural parameter identifiability is a property of a differential model with parameters that allows for the parameters to be determined from the model equations in the absence of noise. One of the standard approaches to assessing this problem is via input–output equations and, in particular, characteristic sets of differential ideals. The precise relation between identifiability and input–output identifiability is subtle. The goal of this note is to clarify this relation. The main results are: identifiability implies input–output identifiability; these notions coincide if the model does not have rational first integrals; the field of input–output identifiable functions is generated by the coefficients of a “minimal” characteristic set of the corresponding differential ideal. We expect that some of these facts may be known to the experts in the area, but we are not aware of any articles in which these facts are stated precisely and rigorously proved.</description><identifier>ISSN: 0938-1279</identifier><identifier>EISSN: 1432-0622</identifier><identifier>DOI: 10.1007/s00200-021-00486-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Artificial Intelligence ; Computer Hardware ; Computer Science ; Differential equations ; Mathematical models ; Mathematics ; Original Paper ; Parameter identification ; Symbolic and Algebraic Manipulation ; Theory of Computation</subject><ispartof>Applicable algebra in engineering, communication and computing, 2023-03, Vol.34 (2), p.165-182</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-bebb344ca6cd2c8d1d8598e3c5d1d68e43bbb0080b6c199152558dd0a143c4763</citedby><cites>FETCH-LOGICAL-c353t-bebb344ca6cd2c8d1d8598e3c5d1d68e43bbb0080b6c199152558dd0a143c4763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00200-021-00486-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00200-021-00486-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04460895$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ovchinnikov, Alexey</creatorcontrib><creatorcontrib>Pogudin, Gleb</creatorcontrib><creatorcontrib>Thompson, Peter</creatorcontrib><title>Parameter identifiability and input–output equations</title><title>Applicable algebra in engineering, communication and computing</title><addtitle>AAECC</addtitle><description>Structural parameter identifiability is a property of a differential model with parameters that allows for the parameters to be determined from the model equations in the absence of noise. One of the standard approaches to assessing this problem is via input–output equations and, in particular, characteristic sets of differential ideals. The precise relation between identifiability and input–output identifiability is subtle. The goal of this note is to clarify this relation. The main results are: identifiability implies input–output identifiability; these notions coincide if the model does not have rational first integrals; the field of input–output identifiable functions is generated by the coefficients of a “minimal” characteristic set of the corresponding differential ideal. We expect that some of these facts may be known to the experts in the area, but we are not aware of any articles in which these facts are stated precisely and rigorously proved.</description><subject>Artificial Intelligence</subject><subject>Computer Hardware</subject><subject>Computer Science</subject><subject>Differential equations</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Original Paper</subject><subject>Parameter identification</subject><subject>Symbolic and Algebraic Manipulation</subject><subject>Theory of Computation</subject><issn>0938-1279</issn><issn>1432-0622</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEUhYMoWKsv4GrAlYvozc9kkmUpaoWCLnQdMplUU9qZNskI3fkOvqFPYuqI7lzdw-U7h8NB6JzAFQGoriMABcBACQbgUmB5gEaEM4pBUHqIRqCYxIRW6hidxLgEAKF4NULi0QSzdsmFwjeuTX7hTe1XPu0K0zaFbzd9-nz_6PqUReG2vUm-a-MpOlqYVXRnP3eMnm9vnqYzPH-4u59O5tiykiVcu7pmnFsjbEOtbEgjSyUds2WWQjrO6roGkFALS5QiJS1L2TRgcnXLK8HG6HLIfTUrvQl-bcJOd8br2WSu9z_gXIBU5RvJ7MXAbkK37V1Metn1oc31NK0qKbjkSmaKDpQNXYzBLX5jCej9lnrYUuct9feWem9igylmuH1x4S_6H9cXgbh2wg</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Ovchinnikov, Alexey</creator><creator>Pogudin, Gleb</creator><creator>Thompson, Peter</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20230301</creationdate><title>Parameter identifiability and input–output equations</title><author>Ovchinnikov, Alexey ; Pogudin, Gleb ; Thompson, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-bebb344ca6cd2c8d1d8598e3c5d1d68e43bbb0080b6c199152558dd0a143c4763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial Intelligence</topic><topic>Computer Hardware</topic><topic>Computer Science</topic><topic>Differential equations</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Original Paper</topic><topic>Parameter identification</topic><topic>Symbolic and Algebraic Manipulation</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ovchinnikov, Alexey</creatorcontrib><creatorcontrib>Pogudin, Gleb</creatorcontrib><creatorcontrib>Thompson, Peter</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Applicable algebra in engineering, communication and computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ovchinnikov, Alexey</au><au>Pogudin, Gleb</au><au>Thompson, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parameter identifiability and input–output equations</atitle><jtitle>Applicable algebra in engineering, communication and computing</jtitle><stitle>AAECC</stitle><date>2023-03-01</date><risdate>2023</risdate><volume>34</volume><issue>2</issue><spage>165</spage><epage>182</epage><pages>165-182</pages><issn>0938-1279</issn><eissn>1432-0622</eissn><abstract>Structural parameter identifiability is a property of a differential model with parameters that allows for the parameters to be determined from the model equations in the absence of noise. One of the standard approaches to assessing this problem is via input–output equations and, in particular, characteristic sets of differential ideals. The precise relation between identifiability and input–output identifiability is subtle. The goal of this note is to clarify this relation. The main results are: identifiability implies input–output identifiability; these notions coincide if the model does not have rational first integrals; the field of input–output identifiable functions is generated by the coefficients of a “minimal” characteristic set of the corresponding differential ideal. We expect that some of these facts may be known to the experts in the area, but we are not aware of any articles in which these facts are stated precisely and rigorously proved.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00200-021-00486-8</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0938-1279
ispartof Applicable algebra in engineering, communication and computing, 2023-03, Vol.34 (2), p.165-182
issn 0938-1279
1432-0622
language eng
recordid cdi_hal_primary_oai_HAL_hal_04460895v1
source SpringerLink Journals
subjects Artificial Intelligence
Computer Hardware
Computer Science
Differential equations
Mathematical models
Mathematics
Original Paper
Parameter identification
Symbolic and Algebraic Manipulation
Theory of Computation
title Parameter identifiability and input–output equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T02%3A11%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parameter%20identifiability%20and%20input%E2%80%93output%20equations&rft.jtitle=Applicable%20algebra%20in%20engineering,%20communication%20and%20computing&rft.au=Ovchinnikov,%20Alexey&rft.date=2023-03-01&rft.volume=34&rft.issue=2&rft.spage=165&rft.epage=182&rft.pages=165-182&rft.issn=0938-1279&rft.eissn=1432-0622&rft_id=info:doi/10.1007/s00200-021-00486-8&rft_dat=%3Cproquest_hal_p%3E2778648498%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2778648498&rft_id=info:pmid/&rfr_iscdi=true