Input-Output Equations and Identifiability of Linear ODE Models

Structural identifiability is a property of a differential model with parameters that allows for the parameters to be determined from the model equations in the absence of noise. The method of input-output (IO) equations is one method for verifying structural identifiability. This method stands out...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2023-02, Vol.68 (2), p.812-824
Hauptverfasser: Ovchinnikov, Alexey, Pogudin, Gleb, Thompson, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 824
container_issue 2
container_start_page 812
container_title IEEE transactions on automatic control
container_volume 68
creator Ovchinnikov, Alexey
Pogudin, Gleb
Thompson, Peter
description Structural identifiability is a property of a differential model with parameters that allows for the parameters to be determined from the model equations in the absence of noise. The method of input-output (IO) equations is one method for verifying structural identifiability. This method stands out in its importance because the additional insights it provides can be used to analyze and improve models. However, its complete theoretical grounds and applicability are still to be established. A subtlety and key for this method to work correctly is knowing whether the coefficients of these equations are identifiable. In this article, to address this, we prove identifiability of the coefficients of IO equations for types of differential models that often appear in practice, such as linear models with one output and linear compartment models in which, from each compartment, one can reach either a leak or an input. This shows that checking identifiability via IO equations for these models is legitimate, and as we prove, that the field of identifiable functions is generated by the coefficients of the IO equations. Finally, we exploit a connection between IO equations and the transfer function matrix to show that, for a linear compartment model with an input and strongly connected graph, the field of all identifiable functions is generated by the coefficients of the transfer function matrix even if the initial conditions are generic.
doi_str_mv 10.1109/TAC.2022.3145571
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04460636v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9691841</ieee_id><sourcerecordid>2771532809</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-a9153def4412b7e1d7ef54ec9a871aed29473e55d4fc5028970e3efea9a4daca3</originalsourceid><addsrcrecordid>eNpVkc1Lw0AQxRdRsFbvgpeAJw-p-5lkTxLaaguRXqrXZZvM6paYxGyi9L93Q0rB0zDD772Z4SF0S_CMECwft-l8RjGlM0a4EDE5QxMiRBJSQdk5mmBMklDSJLpEV87tfRtxTiboaV01fRdu-s6XYPnd687WlQt0VQTrAqrOGqt3trTdIahNkNkKdBtsFsvgtS6gdNfowujSwc2xTtHb83I7X4XZ5mU9T7Mw51h0oZZEsAKM30l3MZAiBiM45FInMdFQUMljBkIU3OQC00TGGBgY0FLzQueaTVE4-rpfaPqdalr7pduDqrVVC_ueqrr9UKXtFZGMC-L5h5H_1OU_eJVmaphhziMcsehnYO9Htmnr7x5cp_Z131b-HUXj2B9OEyw9hUcqb2vnWjAnW4LVEIHyEaghAnWMwEvuRokFgBMuI0kSTtgfVuyAkA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2771532809</pqid></control><display><type>article</type><title>Input-Output Equations and Identifiability of Linear ODE Models</title><source>IEEE/IET Electronic Library (IEL)</source><creator>Ovchinnikov, Alexey ; Pogudin, Gleb ; Thompson, Peter</creator><creatorcontrib>Ovchinnikov, Alexey ; Pogudin, Gleb ; Thompson, Peter</creatorcontrib><description>Structural identifiability is a property of a differential model with parameters that allows for the parameters to be determined from the model equations in the absence of noise. The method of input-output (IO) equations is one method for verifying structural identifiability. This method stands out in its importance because the additional insights it provides can be used to analyze and improve models. However, its complete theoretical grounds and applicability are still to be established. A subtlety and key for this method to work correctly is knowing whether the coefficients of these equations are identifiable. In this article, to address this, we prove identifiability of the coefficients of IO equations for types of differential models that often appear in practice, such as linear models with one output and linear compartment models in which, from each compartment, one can reach either a leak or an input. This shows that checking identifiability via IO equations for these models is legitimate, and as we prove, that the field of identifiable functions is generated by the coefficients of the IO equations. Finally, we exploit a connection between IO equations and the transfer function matrix to show that, for a linear compartment model with an input and strongly connected graph, the field of all identifiable functions is generated by the coefficients of the transfer function matrix even if the initial conditions are generic.</description><identifier>ISSN: 0018-9286</identifier><identifier>ISSN: 1558-2523</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2022.3145571</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Analytical models ; Biological system modeling ; Coefficients ; Computational modeling ; Computer Science ; Data models ; Differential equations ; Identifiable functions ; Initial conditions ; input–output (IO) equations ; linear compartment models ; Mathematical models ; Mathematics ; Parameter identification ; structural parameter identifiability ; Transfer functions</subject><ispartof>IEEE transactions on automatic control, 2023-02, Vol.68 (2), p.812-824</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-a9153def4412b7e1d7ef54ec9a871aed29473e55d4fc5028970e3efea9a4daca3</citedby><cites>FETCH-LOGICAL-c405t-a9153def4412b7e1d7ef54ec9a871aed29473e55d4fc5028970e3efea9a4daca3</cites><orcidid>0000-0001-8192-910X ; 0000-0002-5731-8242 ; 0000-0001-7528-3736</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9691841$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9691841$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.science/hal-04460636$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-193451$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Ovchinnikov, Alexey</creatorcontrib><creatorcontrib>Pogudin, Gleb</creatorcontrib><creatorcontrib>Thompson, Peter</creatorcontrib><title>Input-Output Equations and Identifiability of Linear ODE Models</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>Structural identifiability is a property of a differential model with parameters that allows for the parameters to be determined from the model equations in the absence of noise. The method of input-output (IO) equations is one method for verifying structural identifiability. This method stands out in its importance because the additional insights it provides can be used to analyze and improve models. However, its complete theoretical grounds and applicability are still to be established. A subtlety and key for this method to work correctly is knowing whether the coefficients of these equations are identifiable. In this article, to address this, we prove identifiability of the coefficients of IO equations for types of differential models that often appear in practice, such as linear models with one output and linear compartment models in which, from each compartment, one can reach either a leak or an input. This shows that checking identifiability via IO equations for these models is legitimate, and as we prove, that the field of identifiable functions is generated by the coefficients of the IO equations. Finally, we exploit a connection between IO equations and the transfer function matrix to show that, for a linear compartment model with an input and strongly connected graph, the field of all identifiable functions is generated by the coefficients of the transfer function matrix even if the initial conditions are generic.</description><subject>Analytical models</subject><subject>Biological system modeling</subject><subject>Coefficients</subject><subject>Computational modeling</subject><subject>Computer Science</subject><subject>Data models</subject><subject>Differential equations</subject><subject>Identifiable functions</subject><subject>Initial conditions</subject><subject>input–output (IO) equations</subject><subject>linear compartment models</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Parameter identification</subject><subject>structural parameter identifiability</subject><subject>Transfer functions</subject><issn>0018-9286</issn><issn>1558-2523</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpVkc1Lw0AQxRdRsFbvgpeAJw-p-5lkTxLaaguRXqrXZZvM6paYxGyi9L93Q0rB0zDD772Z4SF0S_CMECwft-l8RjGlM0a4EDE5QxMiRBJSQdk5mmBMklDSJLpEV87tfRtxTiboaV01fRdu-s6XYPnd687WlQt0VQTrAqrOGqt3trTdIahNkNkKdBtsFsvgtS6gdNfowujSwc2xTtHb83I7X4XZ5mU9T7Mw51h0oZZEsAKM30l3MZAiBiM45FInMdFQUMljBkIU3OQC00TGGBgY0FLzQueaTVE4-rpfaPqdalr7pduDqrVVC_ueqrr9UKXtFZGMC-L5h5H_1OU_eJVmaphhziMcsehnYO9Htmnr7x5cp_Z131b-HUXj2B9OEyw9hUcqb2vnWjAnW4LVEIHyEaghAnWMwEvuRokFgBMuI0kSTtgfVuyAkA</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Ovchinnikov, Alexey</creator><creator>Pogudin, Gleb</creator><creator>Thompson, Peter</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DG8</scope><orcidid>https://orcid.org/0000-0001-8192-910X</orcidid><orcidid>https://orcid.org/0000-0002-5731-8242</orcidid><orcidid>https://orcid.org/0000-0001-7528-3736</orcidid></search><sort><creationdate>20230201</creationdate><title>Input-Output Equations and Identifiability of Linear ODE Models</title><author>Ovchinnikov, Alexey ; Pogudin, Gleb ; Thompson, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-a9153def4412b7e1d7ef54ec9a871aed29473e55d4fc5028970e3efea9a4daca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analytical models</topic><topic>Biological system modeling</topic><topic>Coefficients</topic><topic>Computational modeling</topic><topic>Computer Science</topic><topic>Data models</topic><topic>Differential equations</topic><topic>Identifiable functions</topic><topic>Initial conditions</topic><topic>input–output (IO) equations</topic><topic>linear compartment models</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Parameter identification</topic><topic>structural parameter identifiability</topic><topic>Transfer functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ovchinnikov, Alexey</creatorcontrib><creatorcontrib>Pogudin, Gleb</creatorcontrib><creatorcontrib>Thompson, Peter</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Linköpings universitet</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ovchinnikov, Alexey</au><au>Pogudin, Gleb</au><au>Thompson, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Input-Output Equations and Identifiability of Linear ODE Models</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>68</volume><issue>2</issue><spage>812</spage><epage>824</epage><pages>812-824</pages><issn>0018-9286</issn><issn>1558-2523</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>Structural identifiability is a property of a differential model with parameters that allows for the parameters to be determined from the model equations in the absence of noise. The method of input-output (IO) equations is one method for verifying structural identifiability. This method stands out in its importance because the additional insights it provides can be used to analyze and improve models. However, its complete theoretical grounds and applicability are still to be established. A subtlety and key for this method to work correctly is knowing whether the coefficients of these equations are identifiable. In this article, to address this, we prove identifiability of the coefficients of IO equations for types of differential models that often appear in practice, such as linear models with one output and linear compartment models in which, from each compartment, one can reach either a leak or an input. This shows that checking identifiability via IO equations for these models is legitimate, and as we prove, that the field of identifiable functions is generated by the coefficients of the IO equations. Finally, we exploit a connection between IO equations and the transfer function matrix to show that, for a linear compartment model with an input and strongly connected graph, the field of all identifiable functions is generated by the coefficients of the transfer function matrix even if the initial conditions are generic.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAC.2022.3145571</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-8192-910X</orcidid><orcidid>https://orcid.org/0000-0002-5731-8242</orcidid><orcidid>https://orcid.org/0000-0001-7528-3736</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 2023-02, Vol.68 (2), p.812-824
issn 0018-9286
1558-2523
1558-2523
language eng
recordid cdi_hal_primary_oai_HAL_hal_04460636v1
source IEEE/IET Electronic Library (IEL)
subjects Analytical models
Biological system modeling
Coefficients
Computational modeling
Computer Science
Data models
Differential equations
Identifiable functions
Initial conditions
input–output (IO) equations
linear compartment models
Mathematical models
Mathematics
Parameter identification
structural parameter identifiability
Transfer functions
title Input-Output Equations and Identifiability of Linear ODE Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T14%3A12%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Input-Output%20Equations%20and%20Identifiability%20of%20Linear%20ODE%20Models&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Ovchinnikov,%20Alexey&rft.date=2023-02-01&rft.volume=68&rft.issue=2&rft.spage=812&rft.epage=824&rft.pages=812-824&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2022.3145571&rft_dat=%3Cproquest_RIE%3E2771532809%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2771532809&rft_id=info:pmid/&rft_ieee_id=9691841&rfr_iscdi=true