Input-Output Equations and Identifiability of Linear ODE Models
Structural identifiability is a property of a differential model with parameters that allows for the parameters to be determined from the model equations in the absence of noise. The method of input-output (IO) equations is one method for verifying structural identifiability. This method stands out...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 2023-02, Vol.68 (2), p.812-824 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 824 |
---|---|
container_issue | 2 |
container_start_page | 812 |
container_title | IEEE transactions on automatic control |
container_volume | 68 |
creator | Ovchinnikov, Alexey Pogudin, Gleb Thompson, Peter |
description | Structural identifiability is a property of a differential model with parameters that allows for the parameters to be determined from the model equations in the absence of noise. The method of input-output (IO) equations is one method for verifying structural identifiability. This method stands out in its importance because the additional insights it provides can be used to analyze and improve models. However, its complete theoretical grounds and applicability are still to be established. A subtlety and key for this method to work correctly is knowing whether the coefficients of these equations are identifiable. In this article, to address this, we prove identifiability of the coefficients of IO equations for types of differential models that often appear in practice, such as linear models with one output and linear compartment models in which, from each compartment, one can reach either a leak or an input. This shows that checking identifiability via IO equations for these models is legitimate, and as we prove, that the field of identifiable functions is generated by the coefficients of the IO equations. Finally, we exploit a connection between IO equations and the transfer function matrix to show that, for a linear compartment model with an input and strongly connected graph, the field of all identifiable functions is generated by the coefficients of the transfer function matrix even if the initial conditions are generic. |
doi_str_mv | 10.1109/TAC.2022.3145571 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04460636v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9691841</ieee_id><sourcerecordid>2771532809</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-a9153def4412b7e1d7ef54ec9a871aed29473e55d4fc5028970e3efea9a4daca3</originalsourceid><addsrcrecordid>eNpVkc1Lw0AQxRdRsFbvgpeAJw-p-5lkTxLaaguRXqrXZZvM6paYxGyi9L93Q0rB0zDD772Z4SF0S_CMECwft-l8RjGlM0a4EDE5QxMiRBJSQdk5mmBMklDSJLpEV87tfRtxTiboaV01fRdu-s6XYPnd687WlQt0VQTrAqrOGqt3trTdIahNkNkKdBtsFsvgtS6gdNfowujSwc2xTtHb83I7X4XZ5mU9T7Mw51h0oZZEsAKM30l3MZAiBiM45FInMdFQUMljBkIU3OQC00TGGBgY0FLzQueaTVE4-rpfaPqdalr7pduDqrVVC_ueqrr9UKXtFZGMC-L5h5H_1OU_eJVmaphhziMcsehnYO9Htmnr7x5cp_Z131b-HUXj2B9OEyw9hUcqb2vnWjAnW4LVEIHyEaghAnWMwEvuRokFgBMuI0kSTtgfVuyAkA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2771532809</pqid></control><display><type>article</type><title>Input-Output Equations and Identifiability of Linear ODE Models</title><source>IEEE/IET Electronic Library (IEL)</source><creator>Ovchinnikov, Alexey ; Pogudin, Gleb ; Thompson, Peter</creator><creatorcontrib>Ovchinnikov, Alexey ; Pogudin, Gleb ; Thompson, Peter</creatorcontrib><description>Structural identifiability is a property of a differential model with parameters that allows for the parameters to be determined from the model equations in the absence of noise. The method of input-output (IO) equations is one method for verifying structural identifiability. This method stands out in its importance because the additional insights it provides can be used to analyze and improve models. However, its complete theoretical grounds and applicability are still to be established. A subtlety and key for this method to work correctly is knowing whether the coefficients of these equations are identifiable. In this article, to address this, we prove identifiability of the coefficients of IO equations for types of differential models that often appear in practice, such as linear models with one output and linear compartment models in which, from each compartment, one can reach either a leak or an input. This shows that checking identifiability via IO equations for these models is legitimate, and as we prove, that the field of identifiable functions is generated by the coefficients of the IO equations. Finally, we exploit a connection between IO equations and the transfer function matrix to show that, for a linear compartment model with an input and strongly connected graph, the field of all identifiable functions is generated by the coefficients of the transfer function matrix even if the initial conditions are generic.</description><identifier>ISSN: 0018-9286</identifier><identifier>ISSN: 1558-2523</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2022.3145571</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Analytical models ; Biological system modeling ; Coefficients ; Computational modeling ; Computer Science ; Data models ; Differential equations ; Identifiable functions ; Initial conditions ; input–output (IO) equations ; linear compartment models ; Mathematical models ; Mathematics ; Parameter identification ; structural parameter identifiability ; Transfer functions</subject><ispartof>IEEE transactions on automatic control, 2023-02, Vol.68 (2), p.812-824</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-a9153def4412b7e1d7ef54ec9a871aed29473e55d4fc5028970e3efea9a4daca3</citedby><cites>FETCH-LOGICAL-c405t-a9153def4412b7e1d7ef54ec9a871aed29473e55d4fc5028970e3efea9a4daca3</cites><orcidid>0000-0001-8192-910X ; 0000-0002-5731-8242 ; 0000-0001-7528-3736</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9691841$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9691841$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.science/hal-04460636$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-193451$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Ovchinnikov, Alexey</creatorcontrib><creatorcontrib>Pogudin, Gleb</creatorcontrib><creatorcontrib>Thompson, Peter</creatorcontrib><title>Input-Output Equations and Identifiability of Linear ODE Models</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>Structural identifiability is a property of a differential model with parameters that allows for the parameters to be determined from the model equations in the absence of noise. The method of input-output (IO) equations is one method for verifying structural identifiability. This method stands out in its importance because the additional insights it provides can be used to analyze and improve models. However, its complete theoretical grounds and applicability are still to be established. A subtlety and key for this method to work correctly is knowing whether the coefficients of these equations are identifiable. In this article, to address this, we prove identifiability of the coefficients of IO equations for types of differential models that often appear in practice, such as linear models with one output and linear compartment models in which, from each compartment, one can reach either a leak or an input. This shows that checking identifiability via IO equations for these models is legitimate, and as we prove, that the field of identifiable functions is generated by the coefficients of the IO equations. Finally, we exploit a connection between IO equations and the transfer function matrix to show that, for a linear compartment model with an input and strongly connected graph, the field of all identifiable functions is generated by the coefficients of the transfer function matrix even if the initial conditions are generic.</description><subject>Analytical models</subject><subject>Biological system modeling</subject><subject>Coefficients</subject><subject>Computational modeling</subject><subject>Computer Science</subject><subject>Data models</subject><subject>Differential equations</subject><subject>Identifiable functions</subject><subject>Initial conditions</subject><subject>input–output (IO) equations</subject><subject>linear compartment models</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Parameter identification</subject><subject>structural parameter identifiability</subject><subject>Transfer functions</subject><issn>0018-9286</issn><issn>1558-2523</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpVkc1Lw0AQxRdRsFbvgpeAJw-p-5lkTxLaaguRXqrXZZvM6paYxGyi9L93Q0rB0zDD772Z4SF0S_CMECwft-l8RjGlM0a4EDE5QxMiRBJSQdk5mmBMklDSJLpEV87tfRtxTiboaV01fRdu-s6XYPnd687WlQt0VQTrAqrOGqt3trTdIahNkNkKdBtsFsvgtS6gdNfowujSwc2xTtHb83I7X4XZ5mU9T7Mw51h0oZZEsAKM30l3MZAiBiM45FInMdFQUMljBkIU3OQC00TGGBgY0FLzQueaTVE4-rpfaPqdalr7pduDqrVVC_ueqrr9UKXtFZGMC-L5h5H_1OU_eJVmaphhziMcsehnYO9Htmnr7x5cp_Z131b-HUXj2B9OEyw9hUcqb2vnWjAnW4LVEIHyEaghAnWMwEvuRokFgBMuI0kSTtgfVuyAkA</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Ovchinnikov, Alexey</creator><creator>Pogudin, Gleb</creator><creator>Thompson, Peter</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DG8</scope><orcidid>https://orcid.org/0000-0001-8192-910X</orcidid><orcidid>https://orcid.org/0000-0002-5731-8242</orcidid><orcidid>https://orcid.org/0000-0001-7528-3736</orcidid></search><sort><creationdate>20230201</creationdate><title>Input-Output Equations and Identifiability of Linear ODE Models</title><author>Ovchinnikov, Alexey ; Pogudin, Gleb ; Thompson, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-a9153def4412b7e1d7ef54ec9a871aed29473e55d4fc5028970e3efea9a4daca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analytical models</topic><topic>Biological system modeling</topic><topic>Coefficients</topic><topic>Computational modeling</topic><topic>Computer Science</topic><topic>Data models</topic><topic>Differential equations</topic><topic>Identifiable functions</topic><topic>Initial conditions</topic><topic>input–output (IO) equations</topic><topic>linear compartment models</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Parameter identification</topic><topic>structural parameter identifiability</topic><topic>Transfer functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ovchinnikov, Alexey</creatorcontrib><creatorcontrib>Pogudin, Gleb</creatorcontrib><creatorcontrib>Thompson, Peter</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Linköpings universitet</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ovchinnikov, Alexey</au><au>Pogudin, Gleb</au><au>Thompson, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Input-Output Equations and Identifiability of Linear ODE Models</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>68</volume><issue>2</issue><spage>812</spage><epage>824</epage><pages>812-824</pages><issn>0018-9286</issn><issn>1558-2523</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>Structural identifiability is a property of a differential model with parameters that allows for the parameters to be determined from the model equations in the absence of noise. The method of input-output (IO) equations is one method for verifying structural identifiability. This method stands out in its importance because the additional insights it provides can be used to analyze and improve models. However, its complete theoretical grounds and applicability are still to be established. A subtlety and key for this method to work correctly is knowing whether the coefficients of these equations are identifiable. In this article, to address this, we prove identifiability of the coefficients of IO equations for types of differential models that often appear in practice, such as linear models with one output and linear compartment models in which, from each compartment, one can reach either a leak or an input. This shows that checking identifiability via IO equations for these models is legitimate, and as we prove, that the field of identifiable functions is generated by the coefficients of the IO equations. Finally, we exploit a connection between IO equations and the transfer function matrix to show that, for a linear compartment model with an input and strongly connected graph, the field of all identifiable functions is generated by the coefficients of the transfer function matrix even if the initial conditions are generic.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAC.2022.3145571</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-8192-910X</orcidid><orcidid>https://orcid.org/0000-0002-5731-8242</orcidid><orcidid>https://orcid.org/0000-0001-7528-3736</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 2023-02, Vol.68 (2), p.812-824 |
issn | 0018-9286 1558-2523 1558-2523 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04460636v1 |
source | IEEE/IET Electronic Library (IEL) |
subjects | Analytical models Biological system modeling Coefficients Computational modeling Computer Science Data models Differential equations Identifiable functions Initial conditions input–output (IO) equations linear compartment models Mathematical models Mathematics Parameter identification structural parameter identifiability Transfer functions |
title | Input-Output Equations and Identifiability of Linear ODE Models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T14%3A12%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Input-Output%20Equations%20and%20Identifiability%20of%20Linear%20ODE%20Models&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Ovchinnikov,%20Alexey&rft.date=2023-02-01&rft.volume=68&rft.issue=2&rft.spage=812&rft.epage=824&rft.pages=812-824&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2022.3145571&rft_dat=%3Cproquest_RIE%3E2771532809%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2771532809&rft_id=info:pmid/&rft_ieee_id=9691841&rfr_iscdi=true |