Depolarization metric spaces for biological tissues classification

Classification of tissues is an important problem in biomedicine. An efficient tissue classification protocol allows, for instance, the guided‐recognition of structures through treated images or discriminating between healthy and unhealthy regions (e.g., early detection of cancer). In this framework...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biophotonics 2020-08, Vol.13 (8), p.e202000083-n/a
Hauptverfasser: Van Eeckhout, Albert, Garcia‐Caurel, Enric, Ossikovski, Razvigor, Lizana, Angel, Rodríguez, Carla, González‐Arnay, Emilio, Campos, Juan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 8
container_start_page e202000083
container_title Journal of biophotonics
container_volume 13
creator Van Eeckhout, Albert
Garcia‐Caurel, Enric
Ossikovski, Razvigor
Lizana, Angel
Rodríguez, Carla
González‐Arnay, Emilio
Campos, Juan
description Classification of tissues is an important problem in biomedicine. An efficient tissue classification protocol allows, for instance, the guided‐recognition of structures through treated images or discriminating between healthy and unhealthy regions (e.g., early detection of cancer). In this framework, we study the potential of some polarimetric metrics, the so‐called depolarization spaces, for the classification of biological tissues. The analysis is performed using 120 biological ex vivo samples of three different tissues types. Based on these data collection, we provide for the first time a comparison between these depolarization spaces, as well as with most commonly used depolarization metrics, in terms of biological samples discrimination. The results illustrate the way to determine the set of depolarization metrics which optimizes tissue classification efficiencies. In that sense, the results show the interest of the method which is general, and which can be applied to study multiple types of biological samples, including of course human tissues. The latter can be useful for instance, to improve and to boost applications related to optical biopsy. In this work we analyze the suitability of different depolarizing parameters to classify different biological tissues. The study focuses on classifying different tissues from a collection of ex vivo samples by using different depolarizing spaces. The tissues classification efficiencies obtained for some depolarization spaces studied demonstrate their potential for tissue classification tasks, especially when compared with other commonly used depolarizing metrics. The figure shows the 3D representation in the indices of polarimetric purity space of the experimental nonsymmetric ellipsoids obtained for ex vivo chicken thighs measured at 625 nm.
doi_str_mv 10.1002/jbio.202000083
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04458731v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2429594284</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4073-4cbd0fec55d1e11830fb65171a3119a34ad1e3c824691504f17f1edfe371b2423</originalsourceid><addsrcrecordid>eNqFkUtPQjEQhRujUXxsXZqbuNEFONP2vpaADzQkbDRx1_SWVksKxRY0-OstQTFxYzdtTr45M9NDyClCBwHo1aSxvkOBQjoV2yEtrArehoJXu9s3ez4ghzFOAApgOdsnB4xyKOqibJHetZ57J4P9lAvrZ9lUL4JVWZxLpWNmfMhSA-dfrJIuW9gYl0lWTsZoTdLWNcdkz0gX9cn3fUSebm8e-4P2cHR33-8O24pDydpcNWMwWuX5GDVixcA0RY4lSoZYS8Zl0pmqKC9qzIEbLA3qsdGsxIZyyo7I5cb3VToxD3Yqw0p4acWgOxRrDTjPq5LhOyb2YsPOg39LIy_E1EalnZMz7ZdRpP0ZsAJpntDzP-jEL8MsbZIoWuc1pxVPVGdDqeBjDNpsJ0AQ6yTEOgmxTSIVnH3bLpupHm_xn69PQL0BPqzTq3_sxEPvfvRr_gVXz5Mr</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2429594284</pqid></control><display><type>article</type><title>Depolarization metric spaces for biological tissues classification</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Van Eeckhout, Albert ; Garcia‐Caurel, Enric ; Ossikovski, Razvigor ; Lizana, Angel ; Rodríguez, Carla ; González‐Arnay, Emilio ; Campos, Juan</creator><creatorcontrib>Van Eeckhout, Albert ; Garcia‐Caurel, Enric ; Ossikovski, Razvigor ; Lizana, Angel ; Rodríguez, Carla ; González‐Arnay, Emilio ; Campos, Juan</creatorcontrib><description>Classification of tissues is an important problem in biomedicine. An efficient tissue classification protocol allows, for instance, the guided‐recognition of structures through treated images or discriminating between healthy and unhealthy regions (e.g., early detection of cancer). In this framework, we study the potential of some polarimetric metrics, the so‐called depolarization spaces, for the classification of biological tissues. The analysis is performed using 120 biological ex vivo samples of three different tissues types. Based on these data collection, we provide for the first time a comparison between these depolarization spaces, as well as with most commonly used depolarization metrics, in terms of biological samples discrimination. The results illustrate the way to determine the set of depolarization metrics which optimizes tissue classification efficiencies. In that sense, the results show the interest of the method which is general, and which can be applied to study multiple types of biological samples, including of course human tissues. The latter can be useful for instance, to improve and to boost applications related to optical biopsy. In this work we analyze the suitability of different depolarizing parameters to classify different biological tissues. The study focuses on classifying different tissues from a collection of ex vivo samples by using different depolarizing spaces. The tissues classification efficiencies obtained for some depolarization spaces studied demonstrate their potential for tissue classification tasks, especially when compared with other commonly used depolarizing metrics. The figure shows the 3D representation in the indices of polarimetric purity space of the experimental nonsymmetric ellipsoids obtained for ex vivo chicken thighs measured at 625 nm.</description><identifier>ISSN: 1864-063X</identifier><identifier>EISSN: 1864-0648</identifier><identifier>DOI: 10.1002/jbio.202000083</identifier><identifier>PMID: 32406967</identifier><language>eng</language><publisher>Weinheim: WILEY‐VCH Verlag GmbH &amp; Co. KGaA</publisher><subject>Biological properties ; Biological samples ; biological tissue ; biomedical ; Biopsy ; Classification ; Data collection ; Depolarization ; Engineering Sciences ; Human tissues ; imaging ; Metric space ; Mueller matrix ; Object recognition ; Optics ; Photonic ; Polarimetry ; Tissue analysis ; Tissues</subject><ispartof>Journal of biophotonics, 2020-08, Vol.13 (8), p.e202000083-n/a</ispartof><rights>2020 The Authors. published by WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2020 The Authors. Journal of Biophotonics published by WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4073-4cbd0fec55d1e11830fb65171a3119a34ad1e3c824691504f17f1edfe371b2423</citedby><cites>FETCH-LOGICAL-c4073-4cbd0fec55d1e11830fb65171a3119a34ad1e3c824691504f17f1edfe371b2423</cites><orcidid>0000-0003-2540-2746 ; 0000-0002-4861-8657</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbio.202000083$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbio.202000083$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32406967$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://polytechnique.hal.science/hal-04458731$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Van Eeckhout, Albert</creatorcontrib><creatorcontrib>Garcia‐Caurel, Enric</creatorcontrib><creatorcontrib>Ossikovski, Razvigor</creatorcontrib><creatorcontrib>Lizana, Angel</creatorcontrib><creatorcontrib>Rodríguez, Carla</creatorcontrib><creatorcontrib>González‐Arnay, Emilio</creatorcontrib><creatorcontrib>Campos, Juan</creatorcontrib><title>Depolarization metric spaces for biological tissues classification</title><title>Journal of biophotonics</title><addtitle>J Biophotonics</addtitle><description>Classification of tissues is an important problem in biomedicine. An efficient tissue classification protocol allows, for instance, the guided‐recognition of structures through treated images or discriminating between healthy and unhealthy regions (e.g., early detection of cancer). In this framework, we study the potential of some polarimetric metrics, the so‐called depolarization spaces, for the classification of biological tissues. The analysis is performed using 120 biological ex vivo samples of three different tissues types. Based on these data collection, we provide for the first time a comparison between these depolarization spaces, as well as with most commonly used depolarization metrics, in terms of biological samples discrimination. The results illustrate the way to determine the set of depolarization metrics which optimizes tissue classification efficiencies. In that sense, the results show the interest of the method which is general, and which can be applied to study multiple types of biological samples, including of course human tissues. The latter can be useful for instance, to improve and to boost applications related to optical biopsy. In this work we analyze the suitability of different depolarizing parameters to classify different biological tissues. The study focuses on classifying different tissues from a collection of ex vivo samples by using different depolarizing spaces. The tissues classification efficiencies obtained for some depolarization spaces studied demonstrate their potential for tissue classification tasks, especially when compared with other commonly used depolarizing metrics. The figure shows the 3D representation in the indices of polarimetric purity space of the experimental nonsymmetric ellipsoids obtained for ex vivo chicken thighs measured at 625 nm.</description><subject>Biological properties</subject><subject>Biological samples</subject><subject>biological tissue</subject><subject>biomedical</subject><subject>Biopsy</subject><subject>Classification</subject><subject>Data collection</subject><subject>Depolarization</subject><subject>Engineering Sciences</subject><subject>Human tissues</subject><subject>imaging</subject><subject>Metric space</subject><subject>Mueller matrix</subject><subject>Object recognition</subject><subject>Optics</subject><subject>Photonic</subject><subject>Polarimetry</subject><subject>Tissue analysis</subject><subject>Tissues</subject><issn>1864-063X</issn><issn>1864-0648</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkUtPQjEQhRujUXxsXZqbuNEFONP2vpaADzQkbDRx1_SWVksKxRY0-OstQTFxYzdtTr45M9NDyClCBwHo1aSxvkOBQjoV2yEtrArehoJXu9s3ez4ghzFOAApgOdsnB4xyKOqibJHetZ57J4P9lAvrZ9lUL4JVWZxLpWNmfMhSA-dfrJIuW9gYl0lWTsZoTdLWNcdkz0gX9cn3fUSebm8e-4P2cHR33-8O24pDydpcNWMwWuX5GDVixcA0RY4lSoZYS8Zl0pmqKC9qzIEbLA3qsdGsxIZyyo7I5cb3VToxD3Yqw0p4acWgOxRrDTjPq5LhOyb2YsPOg39LIy_E1EalnZMz7ZdRpP0ZsAJpntDzP-jEL8MsbZIoWuc1pxVPVGdDqeBjDNpsJ0AQ6yTEOgmxTSIVnH3bLpupHm_xn69PQL0BPqzTq3_sxEPvfvRr_gVXz5Mr</recordid><startdate>202008</startdate><enddate>202008</enddate><creator>Van Eeckhout, Albert</creator><creator>Garcia‐Caurel, Enric</creator><creator>Ossikovski, Razvigor</creator><creator>Lizana, Angel</creator><creator>Rodríguez, Carla</creator><creator>González‐Arnay, Emilio</creator><creator>Campos, Juan</creator><general>WILEY‐VCH Verlag GmbH &amp; Co. KGaA</general><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>K9.</scope><scope>L7M</scope><scope>P64</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-2540-2746</orcidid><orcidid>https://orcid.org/0000-0002-4861-8657</orcidid></search><sort><creationdate>202008</creationdate><title>Depolarization metric spaces for biological tissues classification</title><author>Van Eeckhout, Albert ; Garcia‐Caurel, Enric ; Ossikovski, Razvigor ; Lizana, Angel ; Rodríguez, Carla ; González‐Arnay, Emilio ; Campos, Juan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4073-4cbd0fec55d1e11830fb65171a3119a34ad1e3c824691504f17f1edfe371b2423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biological properties</topic><topic>Biological samples</topic><topic>biological tissue</topic><topic>biomedical</topic><topic>Biopsy</topic><topic>Classification</topic><topic>Data collection</topic><topic>Depolarization</topic><topic>Engineering Sciences</topic><topic>Human tissues</topic><topic>imaging</topic><topic>Metric space</topic><topic>Mueller matrix</topic><topic>Object recognition</topic><topic>Optics</topic><topic>Photonic</topic><topic>Polarimetry</topic><topic>Tissue analysis</topic><topic>Tissues</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Van Eeckhout, Albert</creatorcontrib><creatorcontrib>Garcia‐Caurel, Enric</creatorcontrib><creatorcontrib>Ossikovski, Razvigor</creatorcontrib><creatorcontrib>Lizana, Angel</creatorcontrib><creatorcontrib>Rodríguez, Carla</creatorcontrib><creatorcontrib>González‐Arnay, Emilio</creatorcontrib><creatorcontrib>Campos, Juan</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of biophotonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Van Eeckhout, Albert</au><au>Garcia‐Caurel, Enric</au><au>Ossikovski, Razvigor</au><au>Lizana, Angel</au><au>Rodríguez, Carla</au><au>González‐Arnay, Emilio</au><au>Campos, Juan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Depolarization metric spaces for biological tissues classification</atitle><jtitle>Journal of biophotonics</jtitle><addtitle>J Biophotonics</addtitle><date>2020-08</date><risdate>2020</risdate><volume>13</volume><issue>8</issue><spage>e202000083</spage><epage>n/a</epage><pages>e202000083-n/a</pages><issn>1864-063X</issn><eissn>1864-0648</eissn><abstract>Classification of tissues is an important problem in biomedicine. An efficient tissue classification protocol allows, for instance, the guided‐recognition of structures through treated images or discriminating between healthy and unhealthy regions (e.g., early detection of cancer). In this framework, we study the potential of some polarimetric metrics, the so‐called depolarization spaces, for the classification of biological tissues. The analysis is performed using 120 biological ex vivo samples of three different tissues types. Based on these data collection, we provide for the first time a comparison between these depolarization spaces, as well as with most commonly used depolarization metrics, in terms of biological samples discrimination. The results illustrate the way to determine the set of depolarization metrics which optimizes tissue classification efficiencies. In that sense, the results show the interest of the method which is general, and which can be applied to study multiple types of biological samples, including of course human tissues. The latter can be useful for instance, to improve and to boost applications related to optical biopsy. In this work we analyze the suitability of different depolarizing parameters to classify different biological tissues. The study focuses on classifying different tissues from a collection of ex vivo samples by using different depolarizing spaces. The tissues classification efficiencies obtained for some depolarization spaces studied demonstrate their potential for tissue classification tasks, especially when compared with other commonly used depolarizing metrics. The figure shows the 3D representation in the indices of polarimetric purity space of the experimental nonsymmetric ellipsoids obtained for ex vivo chicken thighs measured at 625 nm.</abstract><cop>Weinheim</cop><pub>WILEY‐VCH Verlag GmbH &amp; Co. KGaA</pub><pmid>32406967</pmid><doi>10.1002/jbio.202000083</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2540-2746</orcidid><orcidid>https://orcid.org/0000-0002-4861-8657</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1864-063X
ispartof Journal of biophotonics, 2020-08, Vol.13 (8), p.e202000083-n/a
issn 1864-063X
1864-0648
language eng
recordid cdi_hal_primary_oai_HAL_hal_04458731v1
source Wiley Online Library Journals Frontfile Complete
subjects Biological properties
Biological samples
biological tissue
biomedical
Biopsy
Classification
Data collection
Depolarization
Engineering Sciences
Human tissues
imaging
Metric space
Mueller matrix
Object recognition
Optics
Photonic
Polarimetry
Tissue analysis
Tissues
title Depolarization metric spaces for biological tissues classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T19%3A42%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Depolarization%20metric%20spaces%20for%20biological%20tissues%20classification&rft.jtitle=Journal%20of%20biophotonics&rft.au=Van%20Eeckhout,%20Albert&rft.date=2020-08&rft.volume=13&rft.issue=8&rft.spage=e202000083&rft.epage=n/a&rft.pages=e202000083-n/a&rft.issn=1864-063X&rft.eissn=1864-0648&rft_id=info:doi/10.1002/jbio.202000083&rft_dat=%3Cproquest_hal_p%3E2429594284%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2429594284&rft_id=info:pmid/32406967&rfr_iscdi=true