Intravital microscopy at the single vessel level brings new insights of vascular modification mechanisms induced by electropermeabilization

Electroporation/electropermeabilization, i.e. the result of the application of electric pulses to tissues, is a physical method for delivery of exogenous molecules into cells. It is effective particularly for compounds with limited transmembrane transport. In vivo, electropermeabilization facilitate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of controlled release 2012-11, Vol.163 (3), p.396-403
Hauptverfasser: Bellard, Elisabeth, Markelc, Bostjan, Pelofy, Sandrine, Le Guerroué, François, Sersa, Gregor, Teissié, Justin, Cemazar, Maja, Golzio, Muriel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 403
container_issue 3
container_start_page 396
container_title Journal of controlled release
container_volume 163
creator Bellard, Elisabeth
Markelc, Bostjan
Pelofy, Sandrine
Le Guerroué, François
Sersa, Gregor
Teissié, Justin
Cemazar, Maja
Golzio, Muriel
description Electroporation/electropermeabilization, i.e. the result of the application of electric pulses to tissues, is a physical method for delivery of exogenous molecules into cells. It is effective particularly for compounds with limited transmembrane transport. In vivo, electropermeabilization facilitates the delivery of chemotherapeutic drugs into tumor cells that is the basic mechanism of the antitumor effectiveness of electrochemotherapy. This therapy has also blood flow modifying effects in tissues. The aim of our present study was to understand and explain the effects of electropermeabilization on the dynamics (vasomotricity, permeability and recovery) of subcutaneous blood vessels towards different size of molecules. These features were measured in C57Bl/6 mice via a dorsal skin fold window chamber, using fluorescently labeled dextrans of different sizes, intravital fluorescence microscopy imaging and specific image analysis. Application of electric pulses on the skin in vivo resulted in a rapid increase in vascular permeability that gradually recovered to basal levels at different times post-treatment, depending on dextran size. Simultaneously, the immediate constriction of the blood vessels occurred that was more pronounced for arterioles compared to venules. This vasoconstriction of arterioles results in a transient “vascular lock”. The increased permeability of small vessels walls whatever the dextran size associated with delayed perfusion explains the improved delivery of the intravenous injected molecules (i.e. drugs, gene delivery) into the tissues induced by electropermeabilization in vivo. [Display omitted]
doi_str_mv 10.1016/j.jconrel.2012.09.010
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04457164v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168365912006967</els_id><sourcerecordid>1151701202</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-fcdc227a6a99244b2a9ddac7d5874fda04361b46e4d25619eb9e304ade5a2b023</originalsourceid><addsrcrecordid>eNqFkcGO0zAQhiMEYsvCIwC-IMGhwY7tpD6tVitgV6rEAfZsTexJ68qJi50GlVfgpXG2ZTlysaXRN_-M5iuK14yWjLL6467cmTBE9GVFWVVSVVJGnxQLtmr4UiglnxaLzK2WvJbqoniR0o5SKrlonhcXFaes4Su6KH7fDWOEyY3gSe9MDMmE_ZHASMYtkuSGjUcyYUroiccpv23MxUQG_EnckNxmOyYSOjJBMgcPkfTBus4ZGF0YSI9mC4NLfcqwPRi0pD0S9GjGGPYYe4TWeffrgX5ZPOvAJ3x1_i-L-8-fvt_cLtdfv9zdXK-XRkg-LjtjTVU1UINSlRBtBcpaMI2Vq0Z0FqjgNWtFjcJWsmYKW4WcCrAooWppxS-LD6fcLXi9j66HeNQBnL69Xuu5RoWQDavFxDL7_sTuY_hxwDTq3iWD3sOA4ZA0Y5I1WcBDrDyh8xVTxO4xm1E9O9M7fXamZ2eaKp2d5b435xGHtkf72PVXUgbenYF8Y_BdhMG49I-ra844nxd4e-I6CBo2MTP33_IkSXNQrcRMXJ0IzOedHEadjMMha3ExK9E2uP8s-wfeFcP-</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1151701202</pqid></control><display><type>article</type><title>Intravital microscopy at the single vessel level brings new insights of vascular modification mechanisms induced by electropermeabilization</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Bellard, Elisabeth ; Markelc, Bostjan ; Pelofy, Sandrine ; Le Guerroué, François ; Sersa, Gregor ; Teissié, Justin ; Cemazar, Maja ; Golzio, Muriel</creator><creatorcontrib>Bellard, Elisabeth ; Markelc, Bostjan ; Pelofy, Sandrine ; Le Guerroué, François ; Sersa, Gregor ; Teissié, Justin ; Cemazar, Maja ; Golzio, Muriel</creatorcontrib><description>Electroporation/electropermeabilization, i.e. the result of the application of electric pulses to tissues, is a physical method for delivery of exogenous molecules into cells. It is effective particularly for compounds with limited transmembrane transport. In vivo, electropermeabilization facilitates the delivery of chemotherapeutic drugs into tumor cells that is the basic mechanism of the antitumor effectiveness of electrochemotherapy. This therapy has also blood flow modifying effects in tissues. The aim of our present study was to understand and explain the effects of electropermeabilization on the dynamics (vasomotricity, permeability and recovery) of subcutaneous blood vessels towards different size of molecules. These features were measured in C57Bl/6 mice via a dorsal skin fold window chamber, using fluorescently labeled dextrans of different sizes, intravital fluorescence microscopy imaging and specific image analysis. Application of electric pulses on the skin in vivo resulted in a rapid increase in vascular permeability that gradually recovered to basal levels at different times post-treatment, depending on dextran size. Simultaneously, the immediate constriction of the blood vessels occurred that was more pronounced for arterioles compared to venules. This vasoconstriction of arterioles results in a transient “vascular lock”. The increased permeability of small vessels walls whatever the dextran size associated with delayed perfusion explains the improved delivery of the intravenous injected molecules (i.e. drugs, gene delivery) into the tissues induced by electropermeabilization in vivo. [Display omitted]</description><identifier>ISSN: 0168-3659</identifier><identifier>EISSN: 1873-4995</identifier><identifier>DOI: 10.1016/j.jconrel.2012.09.010</identifier><identifier>PMID: 23017380</identifier><identifier>CODEN: JCREEC</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Animals ; arterioles ; Biological and medical sciences ; blood flow ; Blood vessels ; Capillary Permeability ; dextran ; Dextrans - administration &amp; dosage ; Dextrans - chemistry ; Drug delivery ; drug therapy ; drugs ; Electroporation ; Female ; Fluorescein-5-isothiocyanate - administration &amp; dosage ; Fluorescein-5-isothiocyanate - chemistry ; fluorescence microscopy ; Fluorescent Dyes - administration &amp; dosage ; Fluorescent Dyes - chemistry ; General pharmacology ; genes ; image analysis ; intravenous injection ; Intravital microscopy ; Life Sciences ; Medical sciences ; Mice ; Mice, Inbred C57BL ; Microscopy, Fluorescence ; neoplasm cells ; permeability ; Pharmaceutical technology. Pharmaceutical industry ; Pharmacology. Drug treatments ; Skin - metabolism ; tissues ; Vascular permeability ; vasoconstriction</subject><ispartof>Journal of controlled release, 2012-11, Vol.163 (3), p.396-403</ispartof><rights>2012 Elsevier B.V.</rights><rights>2014 INIST-CNRS</rights><rights>Copyright © 2012 Elsevier B.V. All rights reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-fcdc227a6a99244b2a9ddac7d5874fda04361b46e4d25619eb9e304ade5a2b023</citedby><cites>FETCH-LOGICAL-c453t-fcdc227a6a99244b2a9ddac7d5874fda04361b46e4d25619eb9e304ade5a2b023</cites><orcidid>0000-0002-7470-3708 ; 0009-0000-6055-8119 ; 0000-0002-7588-8062</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0168365912006967$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26631332$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23017380$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://ut3-toulouseinp.hal.science/hal-04457164$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bellard, Elisabeth</creatorcontrib><creatorcontrib>Markelc, Bostjan</creatorcontrib><creatorcontrib>Pelofy, Sandrine</creatorcontrib><creatorcontrib>Le Guerroué, François</creatorcontrib><creatorcontrib>Sersa, Gregor</creatorcontrib><creatorcontrib>Teissié, Justin</creatorcontrib><creatorcontrib>Cemazar, Maja</creatorcontrib><creatorcontrib>Golzio, Muriel</creatorcontrib><title>Intravital microscopy at the single vessel level brings new insights of vascular modification mechanisms induced by electropermeabilization</title><title>Journal of controlled release</title><addtitle>J Control Release</addtitle><description>Electroporation/electropermeabilization, i.e. the result of the application of electric pulses to tissues, is a physical method for delivery of exogenous molecules into cells. It is effective particularly for compounds with limited transmembrane transport. In vivo, electropermeabilization facilitates the delivery of chemotherapeutic drugs into tumor cells that is the basic mechanism of the antitumor effectiveness of electrochemotherapy. This therapy has also blood flow modifying effects in tissues. The aim of our present study was to understand and explain the effects of electropermeabilization on the dynamics (vasomotricity, permeability and recovery) of subcutaneous blood vessels towards different size of molecules. These features were measured in C57Bl/6 mice via a dorsal skin fold window chamber, using fluorescently labeled dextrans of different sizes, intravital fluorescence microscopy imaging and specific image analysis. Application of electric pulses on the skin in vivo resulted in a rapid increase in vascular permeability that gradually recovered to basal levels at different times post-treatment, depending on dextran size. Simultaneously, the immediate constriction of the blood vessels occurred that was more pronounced for arterioles compared to venules. This vasoconstriction of arterioles results in a transient “vascular lock”. The increased permeability of small vessels walls whatever the dextran size associated with delayed perfusion explains the improved delivery of the intravenous injected molecules (i.e. drugs, gene delivery) into the tissues induced by electropermeabilization in vivo. [Display omitted]</description><subject>Animals</subject><subject>arterioles</subject><subject>Biological and medical sciences</subject><subject>blood flow</subject><subject>Blood vessels</subject><subject>Capillary Permeability</subject><subject>dextran</subject><subject>Dextrans - administration &amp; dosage</subject><subject>Dextrans - chemistry</subject><subject>Drug delivery</subject><subject>drug therapy</subject><subject>drugs</subject><subject>Electroporation</subject><subject>Female</subject><subject>Fluorescein-5-isothiocyanate - administration &amp; dosage</subject><subject>Fluorescein-5-isothiocyanate - chemistry</subject><subject>fluorescence microscopy</subject><subject>Fluorescent Dyes - administration &amp; dosage</subject><subject>Fluorescent Dyes - chemistry</subject><subject>General pharmacology</subject><subject>genes</subject><subject>image analysis</subject><subject>intravenous injection</subject><subject>Intravital microscopy</subject><subject>Life Sciences</subject><subject>Medical sciences</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Microscopy, Fluorescence</subject><subject>neoplasm cells</subject><subject>permeability</subject><subject>Pharmaceutical technology. Pharmaceutical industry</subject><subject>Pharmacology. Drug treatments</subject><subject>Skin - metabolism</subject><subject>tissues</subject><subject>Vascular permeability</subject><subject>vasoconstriction</subject><issn>0168-3659</issn><issn>1873-4995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkcGO0zAQhiMEYsvCIwC-IMGhwY7tpD6tVitgV6rEAfZsTexJ68qJi50GlVfgpXG2ZTlysaXRN_-M5iuK14yWjLL6467cmTBE9GVFWVVSVVJGnxQLtmr4UiglnxaLzK2WvJbqoniR0o5SKrlonhcXFaes4Su6KH7fDWOEyY3gSe9MDMmE_ZHASMYtkuSGjUcyYUroiccpv23MxUQG_EnckNxmOyYSOjJBMgcPkfTBus4ZGF0YSI9mC4NLfcqwPRi0pD0S9GjGGPYYe4TWeffrgX5ZPOvAJ3x1_i-L-8-fvt_cLtdfv9zdXK-XRkg-LjtjTVU1UINSlRBtBcpaMI2Vq0Z0FqjgNWtFjcJWsmYKW4WcCrAooWppxS-LD6fcLXi9j66HeNQBnL69Xuu5RoWQDavFxDL7_sTuY_hxwDTq3iWD3sOA4ZA0Y5I1WcBDrDyh8xVTxO4xm1E9O9M7fXamZ2eaKp2d5b435xGHtkf72PVXUgbenYF8Y_BdhMG49I-ra844nxd4e-I6CBo2MTP33_IkSXNQrcRMXJ0IzOedHEadjMMha3ExK9E2uP8s-wfeFcP-</recordid><startdate>20121110</startdate><enddate>20121110</enddate><creator>Bellard, Elisabeth</creator><creator>Markelc, Bostjan</creator><creator>Pelofy, Sandrine</creator><creator>Le Guerroué, François</creator><creator>Sersa, Gregor</creator><creator>Teissié, Justin</creator><creator>Cemazar, Maja</creator><creator>Golzio, Muriel</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-7470-3708</orcidid><orcidid>https://orcid.org/0009-0000-6055-8119</orcidid><orcidid>https://orcid.org/0000-0002-7588-8062</orcidid></search><sort><creationdate>20121110</creationdate><title>Intravital microscopy at the single vessel level brings new insights of vascular modification mechanisms induced by electropermeabilization</title><author>Bellard, Elisabeth ; Markelc, Bostjan ; Pelofy, Sandrine ; Le Guerroué, François ; Sersa, Gregor ; Teissié, Justin ; Cemazar, Maja ; Golzio, Muriel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-fcdc227a6a99244b2a9ddac7d5874fda04361b46e4d25619eb9e304ade5a2b023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Animals</topic><topic>arterioles</topic><topic>Biological and medical sciences</topic><topic>blood flow</topic><topic>Blood vessels</topic><topic>Capillary Permeability</topic><topic>dextran</topic><topic>Dextrans - administration &amp; dosage</topic><topic>Dextrans - chemistry</topic><topic>Drug delivery</topic><topic>drug therapy</topic><topic>drugs</topic><topic>Electroporation</topic><topic>Female</topic><topic>Fluorescein-5-isothiocyanate - administration &amp; dosage</topic><topic>Fluorescein-5-isothiocyanate - chemistry</topic><topic>fluorescence microscopy</topic><topic>Fluorescent Dyes - administration &amp; dosage</topic><topic>Fluorescent Dyes - chemistry</topic><topic>General pharmacology</topic><topic>genes</topic><topic>image analysis</topic><topic>intravenous injection</topic><topic>Intravital microscopy</topic><topic>Life Sciences</topic><topic>Medical sciences</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Microscopy, Fluorescence</topic><topic>neoplasm cells</topic><topic>permeability</topic><topic>Pharmaceutical technology. Pharmaceutical industry</topic><topic>Pharmacology. Drug treatments</topic><topic>Skin - metabolism</topic><topic>tissues</topic><topic>Vascular permeability</topic><topic>vasoconstriction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bellard, Elisabeth</creatorcontrib><creatorcontrib>Markelc, Bostjan</creatorcontrib><creatorcontrib>Pelofy, Sandrine</creatorcontrib><creatorcontrib>Le Guerroué, François</creatorcontrib><creatorcontrib>Sersa, Gregor</creatorcontrib><creatorcontrib>Teissié, Justin</creatorcontrib><creatorcontrib>Cemazar, Maja</creatorcontrib><creatorcontrib>Golzio, Muriel</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of controlled release</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bellard, Elisabeth</au><au>Markelc, Bostjan</au><au>Pelofy, Sandrine</au><au>Le Guerroué, François</au><au>Sersa, Gregor</au><au>Teissié, Justin</au><au>Cemazar, Maja</au><au>Golzio, Muriel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intravital microscopy at the single vessel level brings new insights of vascular modification mechanisms induced by electropermeabilization</atitle><jtitle>Journal of controlled release</jtitle><addtitle>J Control Release</addtitle><date>2012-11-10</date><risdate>2012</risdate><volume>163</volume><issue>3</issue><spage>396</spage><epage>403</epage><pages>396-403</pages><issn>0168-3659</issn><eissn>1873-4995</eissn><coden>JCREEC</coden><abstract>Electroporation/electropermeabilization, i.e. the result of the application of electric pulses to tissues, is a physical method for delivery of exogenous molecules into cells. It is effective particularly for compounds with limited transmembrane transport. In vivo, electropermeabilization facilitates the delivery of chemotherapeutic drugs into tumor cells that is the basic mechanism of the antitumor effectiveness of electrochemotherapy. This therapy has also blood flow modifying effects in tissues. The aim of our present study was to understand and explain the effects of electropermeabilization on the dynamics (vasomotricity, permeability and recovery) of subcutaneous blood vessels towards different size of molecules. These features were measured in C57Bl/6 mice via a dorsal skin fold window chamber, using fluorescently labeled dextrans of different sizes, intravital fluorescence microscopy imaging and specific image analysis. Application of electric pulses on the skin in vivo resulted in a rapid increase in vascular permeability that gradually recovered to basal levels at different times post-treatment, depending on dextran size. Simultaneously, the immediate constriction of the blood vessels occurred that was more pronounced for arterioles compared to venules. This vasoconstriction of arterioles results in a transient “vascular lock”. The increased permeability of small vessels walls whatever the dextran size associated with delayed perfusion explains the improved delivery of the intravenous injected molecules (i.e. drugs, gene delivery) into the tissues induced by electropermeabilization in vivo. [Display omitted]</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><pmid>23017380</pmid><doi>10.1016/j.jconrel.2012.09.010</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-7470-3708</orcidid><orcidid>https://orcid.org/0009-0000-6055-8119</orcidid><orcidid>https://orcid.org/0000-0002-7588-8062</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0168-3659
ispartof Journal of controlled release, 2012-11, Vol.163 (3), p.396-403
issn 0168-3659
1873-4995
language eng
recordid cdi_hal_primary_oai_HAL_hal_04457164v1
source MEDLINE; Elsevier ScienceDirect Journals
subjects Animals
arterioles
Biological and medical sciences
blood flow
Blood vessels
Capillary Permeability
dextran
Dextrans - administration & dosage
Dextrans - chemistry
Drug delivery
drug therapy
drugs
Electroporation
Female
Fluorescein-5-isothiocyanate - administration & dosage
Fluorescein-5-isothiocyanate - chemistry
fluorescence microscopy
Fluorescent Dyes - administration & dosage
Fluorescent Dyes - chemistry
General pharmacology
genes
image analysis
intravenous injection
Intravital microscopy
Life Sciences
Medical sciences
Mice
Mice, Inbred C57BL
Microscopy, Fluorescence
neoplasm cells
permeability
Pharmaceutical technology. Pharmaceutical industry
Pharmacology. Drug treatments
Skin - metabolism
tissues
Vascular permeability
vasoconstriction
title Intravital microscopy at the single vessel level brings new insights of vascular modification mechanisms induced by electropermeabilization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T22%3A32%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intravital%20microscopy%20at%20the%20single%20vessel%20level%20brings%20new%20insights%20of%20vascular%20modification%20mechanisms%20induced%20by%20electropermeabilization&rft.jtitle=Journal%20of%20controlled%20release&rft.au=Bellard,%20Elisabeth&rft.date=2012-11-10&rft.volume=163&rft.issue=3&rft.spage=396&rft.epage=403&rft.pages=396-403&rft.issn=0168-3659&rft.eissn=1873-4995&rft.coden=JCREEC&rft_id=info:doi/10.1016/j.jconrel.2012.09.010&rft_dat=%3Cproquest_hal_p%3E1151701202%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1151701202&rft_id=info:pmid/23017380&rft_els_id=S0168365912006967&rfr_iscdi=true