Intravital microscopy at the single vessel level brings new insights of vascular modification mechanisms induced by electropermeabilization
Electroporation/electropermeabilization, i.e. the result of the application of electric pulses to tissues, is a physical method for delivery of exogenous molecules into cells. It is effective particularly for compounds with limited transmembrane transport. In vivo, electropermeabilization facilitate...
Gespeichert in:
Veröffentlicht in: | Journal of controlled release 2012-11, Vol.163 (3), p.396-403 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 403 |
---|---|
container_issue | 3 |
container_start_page | 396 |
container_title | Journal of controlled release |
container_volume | 163 |
creator | Bellard, Elisabeth Markelc, Bostjan Pelofy, Sandrine Le Guerroué, François Sersa, Gregor Teissié, Justin Cemazar, Maja Golzio, Muriel |
description | Electroporation/electropermeabilization, i.e. the result of the application of electric pulses to tissues, is a physical method for delivery of exogenous molecules into cells. It is effective particularly for compounds with limited transmembrane transport. In vivo, electropermeabilization facilitates the delivery of chemotherapeutic drugs into tumor cells that is the basic mechanism of the antitumor effectiveness of electrochemotherapy. This therapy has also blood flow modifying effects in tissues. The aim of our present study was to understand and explain the effects of electropermeabilization on the dynamics (vasomotricity, permeability and recovery) of subcutaneous blood vessels towards different size of molecules. These features were measured in C57Bl/6 mice via a dorsal skin fold window chamber, using fluorescently labeled dextrans of different sizes, intravital fluorescence microscopy imaging and specific image analysis. Application of electric pulses on the skin in vivo resulted in a rapid increase in vascular permeability that gradually recovered to basal levels at different times post-treatment, depending on dextran size. Simultaneously, the immediate constriction of the blood vessels occurred that was more pronounced for arterioles compared to venules. This vasoconstriction of arterioles results in a transient “vascular lock”.
The increased permeability of small vessels walls whatever the dextran size associated with delayed perfusion explains the improved delivery of the intravenous injected molecules (i.e. drugs, gene delivery) into the tissues induced by electropermeabilization in vivo.
[Display omitted] |
doi_str_mv | 10.1016/j.jconrel.2012.09.010 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04457164v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168365912006967</els_id><sourcerecordid>1151701202</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-fcdc227a6a99244b2a9ddac7d5874fda04361b46e4d25619eb9e304ade5a2b023</originalsourceid><addsrcrecordid>eNqFkcGO0zAQhiMEYsvCIwC-IMGhwY7tpD6tVitgV6rEAfZsTexJ68qJi50GlVfgpXG2ZTlysaXRN_-M5iuK14yWjLL6467cmTBE9GVFWVVSVVJGnxQLtmr4UiglnxaLzK2WvJbqoniR0o5SKrlonhcXFaes4Su6KH7fDWOEyY3gSe9MDMmE_ZHASMYtkuSGjUcyYUroiccpv23MxUQG_EnckNxmOyYSOjJBMgcPkfTBus4ZGF0YSI9mC4NLfcqwPRi0pD0S9GjGGPYYe4TWeffrgX5ZPOvAJ3x1_i-L-8-fvt_cLtdfv9zdXK-XRkg-LjtjTVU1UINSlRBtBcpaMI2Vq0Z0FqjgNWtFjcJWsmYKW4WcCrAooWppxS-LD6fcLXi9j66HeNQBnL69Xuu5RoWQDavFxDL7_sTuY_hxwDTq3iWD3sOA4ZA0Y5I1WcBDrDyh8xVTxO4xm1E9O9M7fXamZ2eaKp2d5b435xGHtkf72PVXUgbenYF8Y_BdhMG49I-ra844nxd4e-I6CBo2MTP33_IkSXNQrcRMXJ0IzOedHEadjMMha3ExK9E2uP8s-wfeFcP-</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1151701202</pqid></control><display><type>article</type><title>Intravital microscopy at the single vessel level brings new insights of vascular modification mechanisms induced by electropermeabilization</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Bellard, Elisabeth ; Markelc, Bostjan ; Pelofy, Sandrine ; Le Guerroué, François ; Sersa, Gregor ; Teissié, Justin ; Cemazar, Maja ; Golzio, Muriel</creator><creatorcontrib>Bellard, Elisabeth ; Markelc, Bostjan ; Pelofy, Sandrine ; Le Guerroué, François ; Sersa, Gregor ; Teissié, Justin ; Cemazar, Maja ; Golzio, Muriel</creatorcontrib><description>Electroporation/electropermeabilization, i.e. the result of the application of electric pulses to tissues, is a physical method for delivery of exogenous molecules into cells. It is effective particularly for compounds with limited transmembrane transport. In vivo, electropermeabilization facilitates the delivery of chemotherapeutic drugs into tumor cells that is the basic mechanism of the antitumor effectiveness of electrochemotherapy. This therapy has also blood flow modifying effects in tissues. The aim of our present study was to understand and explain the effects of electropermeabilization on the dynamics (vasomotricity, permeability and recovery) of subcutaneous blood vessels towards different size of molecules. These features were measured in C57Bl/6 mice via a dorsal skin fold window chamber, using fluorescently labeled dextrans of different sizes, intravital fluorescence microscopy imaging and specific image analysis. Application of electric pulses on the skin in vivo resulted in a rapid increase in vascular permeability that gradually recovered to basal levels at different times post-treatment, depending on dextran size. Simultaneously, the immediate constriction of the blood vessels occurred that was more pronounced for arterioles compared to venules. This vasoconstriction of arterioles results in a transient “vascular lock”.
The increased permeability of small vessels walls whatever the dextran size associated with delayed perfusion explains the improved delivery of the intravenous injected molecules (i.e. drugs, gene delivery) into the tissues induced by electropermeabilization in vivo.
[Display omitted]</description><identifier>ISSN: 0168-3659</identifier><identifier>EISSN: 1873-4995</identifier><identifier>DOI: 10.1016/j.jconrel.2012.09.010</identifier><identifier>PMID: 23017380</identifier><identifier>CODEN: JCREEC</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Animals ; arterioles ; Biological and medical sciences ; blood flow ; Blood vessels ; Capillary Permeability ; dextran ; Dextrans - administration & dosage ; Dextrans - chemistry ; Drug delivery ; drug therapy ; drugs ; Electroporation ; Female ; Fluorescein-5-isothiocyanate - administration & dosage ; Fluorescein-5-isothiocyanate - chemistry ; fluorescence microscopy ; Fluorescent Dyes - administration & dosage ; Fluorescent Dyes - chemistry ; General pharmacology ; genes ; image analysis ; intravenous injection ; Intravital microscopy ; Life Sciences ; Medical sciences ; Mice ; Mice, Inbred C57BL ; Microscopy, Fluorescence ; neoplasm cells ; permeability ; Pharmaceutical technology. Pharmaceutical industry ; Pharmacology. Drug treatments ; Skin - metabolism ; tissues ; Vascular permeability ; vasoconstriction</subject><ispartof>Journal of controlled release, 2012-11, Vol.163 (3), p.396-403</ispartof><rights>2012 Elsevier B.V.</rights><rights>2014 INIST-CNRS</rights><rights>Copyright © 2012 Elsevier B.V. All rights reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-fcdc227a6a99244b2a9ddac7d5874fda04361b46e4d25619eb9e304ade5a2b023</citedby><cites>FETCH-LOGICAL-c453t-fcdc227a6a99244b2a9ddac7d5874fda04361b46e4d25619eb9e304ade5a2b023</cites><orcidid>0000-0002-7470-3708 ; 0009-0000-6055-8119 ; 0000-0002-7588-8062</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0168365912006967$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26631332$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23017380$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://ut3-toulouseinp.hal.science/hal-04457164$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bellard, Elisabeth</creatorcontrib><creatorcontrib>Markelc, Bostjan</creatorcontrib><creatorcontrib>Pelofy, Sandrine</creatorcontrib><creatorcontrib>Le Guerroué, François</creatorcontrib><creatorcontrib>Sersa, Gregor</creatorcontrib><creatorcontrib>Teissié, Justin</creatorcontrib><creatorcontrib>Cemazar, Maja</creatorcontrib><creatorcontrib>Golzio, Muriel</creatorcontrib><title>Intravital microscopy at the single vessel level brings new insights of vascular modification mechanisms induced by electropermeabilization</title><title>Journal of controlled release</title><addtitle>J Control Release</addtitle><description>Electroporation/electropermeabilization, i.e. the result of the application of electric pulses to tissues, is a physical method for delivery of exogenous molecules into cells. It is effective particularly for compounds with limited transmembrane transport. In vivo, electropermeabilization facilitates the delivery of chemotherapeutic drugs into tumor cells that is the basic mechanism of the antitumor effectiveness of electrochemotherapy. This therapy has also blood flow modifying effects in tissues. The aim of our present study was to understand and explain the effects of electropermeabilization on the dynamics (vasomotricity, permeability and recovery) of subcutaneous blood vessels towards different size of molecules. These features were measured in C57Bl/6 mice via a dorsal skin fold window chamber, using fluorescently labeled dextrans of different sizes, intravital fluorescence microscopy imaging and specific image analysis. Application of electric pulses on the skin in vivo resulted in a rapid increase in vascular permeability that gradually recovered to basal levels at different times post-treatment, depending on dextran size. Simultaneously, the immediate constriction of the blood vessels occurred that was more pronounced for arterioles compared to venules. This vasoconstriction of arterioles results in a transient “vascular lock”.
The increased permeability of small vessels walls whatever the dextran size associated with delayed perfusion explains the improved delivery of the intravenous injected molecules (i.e. drugs, gene delivery) into the tissues induced by electropermeabilization in vivo.
[Display omitted]</description><subject>Animals</subject><subject>arterioles</subject><subject>Biological and medical sciences</subject><subject>blood flow</subject><subject>Blood vessels</subject><subject>Capillary Permeability</subject><subject>dextran</subject><subject>Dextrans - administration & dosage</subject><subject>Dextrans - chemistry</subject><subject>Drug delivery</subject><subject>drug therapy</subject><subject>drugs</subject><subject>Electroporation</subject><subject>Female</subject><subject>Fluorescein-5-isothiocyanate - administration & dosage</subject><subject>Fluorescein-5-isothiocyanate - chemistry</subject><subject>fluorescence microscopy</subject><subject>Fluorescent Dyes - administration & dosage</subject><subject>Fluorescent Dyes - chemistry</subject><subject>General pharmacology</subject><subject>genes</subject><subject>image analysis</subject><subject>intravenous injection</subject><subject>Intravital microscopy</subject><subject>Life Sciences</subject><subject>Medical sciences</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Microscopy, Fluorescence</subject><subject>neoplasm cells</subject><subject>permeability</subject><subject>Pharmaceutical technology. Pharmaceutical industry</subject><subject>Pharmacology. Drug treatments</subject><subject>Skin - metabolism</subject><subject>tissues</subject><subject>Vascular permeability</subject><subject>vasoconstriction</subject><issn>0168-3659</issn><issn>1873-4995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkcGO0zAQhiMEYsvCIwC-IMGhwY7tpD6tVitgV6rEAfZsTexJ68qJi50GlVfgpXG2ZTlysaXRN_-M5iuK14yWjLL6467cmTBE9GVFWVVSVVJGnxQLtmr4UiglnxaLzK2WvJbqoniR0o5SKrlonhcXFaes4Su6KH7fDWOEyY3gSe9MDMmE_ZHASMYtkuSGjUcyYUroiccpv23MxUQG_EnckNxmOyYSOjJBMgcPkfTBus4ZGF0YSI9mC4NLfcqwPRi0pD0S9GjGGPYYe4TWeffrgX5ZPOvAJ3x1_i-L-8-fvt_cLtdfv9zdXK-XRkg-LjtjTVU1UINSlRBtBcpaMI2Vq0Z0FqjgNWtFjcJWsmYKW4WcCrAooWppxS-LD6fcLXi9j66HeNQBnL69Xuu5RoWQDavFxDL7_sTuY_hxwDTq3iWD3sOA4ZA0Y5I1WcBDrDyh8xVTxO4xm1E9O9M7fXamZ2eaKp2d5b435xGHtkf72PVXUgbenYF8Y_BdhMG49I-ra844nxd4e-I6CBo2MTP33_IkSXNQrcRMXJ0IzOedHEadjMMha3ExK9E2uP8s-wfeFcP-</recordid><startdate>20121110</startdate><enddate>20121110</enddate><creator>Bellard, Elisabeth</creator><creator>Markelc, Bostjan</creator><creator>Pelofy, Sandrine</creator><creator>Le Guerroué, François</creator><creator>Sersa, Gregor</creator><creator>Teissié, Justin</creator><creator>Cemazar, Maja</creator><creator>Golzio, Muriel</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-7470-3708</orcidid><orcidid>https://orcid.org/0009-0000-6055-8119</orcidid><orcidid>https://orcid.org/0000-0002-7588-8062</orcidid></search><sort><creationdate>20121110</creationdate><title>Intravital microscopy at the single vessel level brings new insights of vascular modification mechanisms induced by electropermeabilization</title><author>Bellard, Elisabeth ; Markelc, Bostjan ; Pelofy, Sandrine ; Le Guerroué, François ; Sersa, Gregor ; Teissié, Justin ; Cemazar, Maja ; Golzio, Muriel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-fcdc227a6a99244b2a9ddac7d5874fda04361b46e4d25619eb9e304ade5a2b023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Animals</topic><topic>arterioles</topic><topic>Biological and medical sciences</topic><topic>blood flow</topic><topic>Blood vessels</topic><topic>Capillary Permeability</topic><topic>dextran</topic><topic>Dextrans - administration & dosage</topic><topic>Dextrans - chemistry</topic><topic>Drug delivery</topic><topic>drug therapy</topic><topic>drugs</topic><topic>Electroporation</topic><topic>Female</topic><topic>Fluorescein-5-isothiocyanate - administration & dosage</topic><topic>Fluorescein-5-isothiocyanate - chemistry</topic><topic>fluorescence microscopy</topic><topic>Fluorescent Dyes - administration & dosage</topic><topic>Fluorescent Dyes - chemistry</topic><topic>General pharmacology</topic><topic>genes</topic><topic>image analysis</topic><topic>intravenous injection</topic><topic>Intravital microscopy</topic><topic>Life Sciences</topic><topic>Medical sciences</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Microscopy, Fluorescence</topic><topic>neoplasm cells</topic><topic>permeability</topic><topic>Pharmaceutical technology. Pharmaceutical industry</topic><topic>Pharmacology. Drug treatments</topic><topic>Skin - metabolism</topic><topic>tissues</topic><topic>Vascular permeability</topic><topic>vasoconstriction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bellard, Elisabeth</creatorcontrib><creatorcontrib>Markelc, Bostjan</creatorcontrib><creatorcontrib>Pelofy, Sandrine</creatorcontrib><creatorcontrib>Le Guerroué, François</creatorcontrib><creatorcontrib>Sersa, Gregor</creatorcontrib><creatorcontrib>Teissié, Justin</creatorcontrib><creatorcontrib>Cemazar, Maja</creatorcontrib><creatorcontrib>Golzio, Muriel</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of controlled release</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bellard, Elisabeth</au><au>Markelc, Bostjan</au><au>Pelofy, Sandrine</au><au>Le Guerroué, François</au><au>Sersa, Gregor</au><au>Teissié, Justin</au><au>Cemazar, Maja</au><au>Golzio, Muriel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intravital microscopy at the single vessel level brings new insights of vascular modification mechanisms induced by electropermeabilization</atitle><jtitle>Journal of controlled release</jtitle><addtitle>J Control Release</addtitle><date>2012-11-10</date><risdate>2012</risdate><volume>163</volume><issue>3</issue><spage>396</spage><epage>403</epage><pages>396-403</pages><issn>0168-3659</issn><eissn>1873-4995</eissn><coden>JCREEC</coden><abstract>Electroporation/electropermeabilization, i.e. the result of the application of electric pulses to tissues, is a physical method for delivery of exogenous molecules into cells. It is effective particularly for compounds with limited transmembrane transport. In vivo, electropermeabilization facilitates the delivery of chemotherapeutic drugs into tumor cells that is the basic mechanism of the antitumor effectiveness of electrochemotherapy. This therapy has also blood flow modifying effects in tissues. The aim of our present study was to understand and explain the effects of electropermeabilization on the dynamics (vasomotricity, permeability and recovery) of subcutaneous blood vessels towards different size of molecules. These features were measured in C57Bl/6 mice via a dorsal skin fold window chamber, using fluorescently labeled dextrans of different sizes, intravital fluorescence microscopy imaging and specific image analysis. Application of electric pulses on the skin in vivo resulted in a rapid increase in vascular permeability that gradually recovered to basal levels at different times post-treatment, depending on dextran size. Simultaneously, the immediate constriction of the blood vessels occurred that was more pronounced for arterioles compared to venules. This vasoconstriction of arterioles results in a transient “vascular lock”.
The increased permeability of small vessels walls whatever the dextran size associated with delayed perfusion explains the improved delivery of the intravenous injected molecules (i.e. drugs, gene delivery) into the tissues induced by electropermeabilization in vivo.
[Display omitted]</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><pmid>23017380</pmid><doi>10.1016/j.jconrel.2012.09.010</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-7470-3708</orcidid><orcidid>https://orcid.org/0009-0000-6055-8119</orcidid><orcidid>https://orcid.org/0000-0002-7588-8062</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0168-3659 |
ispartof | Journal of controlled release, 2012-11, Vol.163 (3), p.396-403 |
issn | 0168-3659 1873-4995 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04457164v1 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Animals arterioles Biological and medical sciences blood flow Blood vessels Capillary Permeability dextran Dextrans - administration & dosage Dextrans - chemistry Drug delivery drug therapy drugs Electroporation Female Fluorescein-5-isothiocyanate - administration & dosage Fluorescein-5-isothiocyanate - chemistry fluorescence microscopy Fluorescent Dyes - administration & dosage Fluorescent Dyes - chemistry General pharmacology genes image analysis intravenous injection Intravital microscopy Life Sciences Medical sciences Mice Mice, Inbred C57BL Microscopy, Fluorescence neoplasm cells permeability Pharmaceutical technology. Pharmaceutical industry Pharmacology. Drug treatments Skin - metabolism tissues Vascular permeability vasoconstriction |
title | Intravital microscopy at the single vessel level brings new insights of vascular modification mechanisms induced by electropermeabilization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T22%3A32%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intravital%20microscopy%20at%20the%20single%20vessel%20level%20brings%20new%20insights%20of%20vascular%20modification%20mechanisms%20induced%20by%20electropermeabilization&rft.jtitle=Journal%20of%20controlled%20release&rft.au=Bellard,%20Elisabeth&rft.date=2012-11-10&rft.volume=163&rft.issue=3&rft.spage=396&rft.epage=403&rft.pages=396-403&rft.issn=0168-3659&rft.eissn=1873-4995&rft.coden=JCREEC&rft_id=info:doi/10.1016/j.jconrel.2012.09.010&rft_dat=%3Cproquest_hal_p%3E1151701202%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1151701202&rft_id=info:pmid/23017380&rft_els_id=S0168365912006967&rfr_iscdi=true |