Representation of the non-dominated set in biobjective discrete optimization

This paper introduces several algorithms for finding a representative subset of the non-dominated point set of a biobjective discrete optimization problem with respect to uniformity, coverage and the ϵ-indicator. We consider the representation problem itself as multiobjective, trying to find a good...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & operations research 2015-11, Vol.63, p.172-186
Hauptverfasser: Vaz, Daniel, Paquete, Luís, Fonseca, Carlos M., Klamroth, Kathrin, Stiglmayr, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 186
container_issue
container_start_page 172
container_title Computers & operations research
container_volume 63
creator Vaz, Daniel
Paquete, Luís
Fonseca, Carlos M.
Klamroth, Kathrin
Stiglmayr, Michael
description This paper introduces several algorithms for finding a representative subset of the non-dominated point set of a biobjective discrete optimization problem with respect to uniformity, coverage and the ϵ-indicator. We consider the representation problem itself as multiobjective, trying to find a good compromise between these quality measures. These representation problems are formulated as particular facility location problems with a special location structure, which allows for polynomial-time algorithms in the biobjective case based on the principles of dynamic programming and threshold approaches. In addition, we show that several multiobjective variants of these representation problems are also solvable in polynomial time. Computational results obtained by these approaches on a wide range of randomly generated point sets are presented and discussed. •We formulate the representation problem in two dimensions for three different measures: uniformity, coverage, and є-indicator.•We present algorithms that solve the representation problems for the three measures in polynomial time.•We consider multiobjective variants of representation problems, and present polynomial time algorithms to solve them.•We present and discuss experimental results for all the problems.
doi_str_mv 10.1016/j.cor.2015.05.003
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04445555v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0305054815001185</els_id><sourcerecordid>3733397281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-3df87e699bc537a48df101b491088e32375355a68bfa000330316010a6f6446d3</originalsourceid><addsrcrecordid>eNp9kU9LAzEQxYMoWKsfwNuCFz1snWz-7C6eiqgVCoIoeAvZ3VmapU1qkhb005ta8eDBYSAw_F54b4aQcwoTClReD5PW-UkBVEwgNbADMqJVyfJSirdDMgIGIgfBq2NyEsIAqcqCjsj8GdceA9qoo3E2c30WF5hZZ_POrYzVEbssYMyMzRrjmgHbaLaYdSa0HiNmbh3Nynx-q0_JUa-XAc9-3jF5vb97uZ3l86eHx9vpPG-5lDFnXV-VKOu6aQUrNa-6PmVoeE2hqpAVrBRMCC2rptfJJ2PAqAQKWvaSc9mxMbna_7vQS7X2ZqX9h3LaqNl0rnYz4JyLVFua2Ms9u_bufYMhqlWyjsultug2QdFSFlBXRb1DL_6gg9t4m5IoKmtWgKBFnSi6p1rvQvDY_zqgoHa3UINKt1C7WyhInQKMyc1eg2krW4NehdagbbEzPi1Udc78o_4CMUiPNw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1693205129</pqid></control><display><type>article</type><title>Representation of the non-dominated set in biobjective discrete optimization</title><source>Elsevier ScienceDirect Journals Collection</source><creator>Vaz, Daniel ; Paquete, Luís ; Fonseca, Carlos M. ; Klamroth, Kathrin ; Stiglmayr, Michael</creator><creatorcontrib>Vaz, Daniel ; Paquete, Luís ; Fonseca, Carlos M. ; Klamroth, Kathrin ; Stiglmayr, Michael</creatorcontrib><description>This paper introduces several algorithms for finding a representative subset of the non-dominated point set of a biobjective discrete optimization problem with respect to uniformity, coverage and the ϵ-indicator. We consider the representation problem itself as multiobjective, trying to find a good compromise between these quality measures. These representation problems are formulated as particular facility location problems with a special location structure, which allows for polynomial-time algorithms in the biobjective case based on the principles of dynamic programming and threshold approaches. In addition, we show that several multiobjective variants of these representation problems are also solvable in polynomial time. Computational results obtained by these approaches on a wide range of randomly generated point sets are presented and discussed. •We formulate the representation problem in two dimensions for three different measures: uniformity, coverage, and є-indicator.•We present algorithms that solve the representation problems for the three measures in polynomial time.•We consider multiobjective variants of representation problems, and present polynomial time algorithms to solve them.•We present and discuss experimental results for all the problems.</description><identifier>ISSN: 0305-0548</identifier><identifier>EISSN: 1873-765X</identifier><identifier>EISSN: 0305-0548</identifier><identifier>DOI: 10.1016/j.cor.2015.05.003</identifier><identifier>CODEN: CMORAP</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Algorithms ; Computer Science ; Dynamic programming ; Facilities planning ; Location analysis ; Mathematical problems ; Multiobjective discrete optimization ; Operations Research ; Optimization ; Optimization algorithms ; Polynomials ; Representation ; Representations ; Site selection ; Studies ; Threshold algorithm ; Thresholds ; Variability</subject><ispartof>Computers &amp; operations research, 2015-11, Vol.63, p.172-186</ispartof><rights>2015 Elsevier Ltd</rights><rights>Copyright Pergamon Press Inc. Nov 2015</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-3df87e699bc537a48df101b491088e32375355a68bfa000330316010a6f6446d3</citedby><cites>FETCH-LOGICAL-c466t-3df87e699bc537a48df101b491088e32375355a68bfa000330316010a6f6446d3</cites><orcidid>0000-0003-2224-2185 ; 0000-0001-5162-2457 ; 0000-0001-7525-8901</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0305054815001185$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04445555$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Vaz, Daniel</creatorcontrib><creatorcontrib>Paquete, Luís</creatorcontrib><creatorcontrib>Fonseca, Carlos M.</creatorcontrib><creatorcontrib>Klamroth, Kathrin</creatorcontrib><creatorcontrib>Stiglmayr, Michael</creatorcontrib><title>Representation of the non-dominated set in biobjective discrete optimization</title><title>Computers &amp; operations research</title><description>This paper introduces several algorithms for finding a representative subset of the non-dominated point set of a biobjective discrete optimization problem with respect to uniformity, coverage and the ϵ-indicator. We consider the representation problem itself as multiobjective, trying to find a good compromise between these quality measures. These representation problems are formulated as particular facility location problems with a special location structure, which allows for polynomial-time algorithms in the biobjective case based on the principles of dynamic programming and threshold approaches. In addition, we show that several multiobjective variants of these representation problems are also solvable in polynomial time. Computational results obtained by these approaches on a wide range of randomly generated point sets are presented and discussed. •We formulate the representation problem in two dimensions for three different measures: uniformity, coverage, and є-indicator.•We present algorithms that solve the representation problems for the three measures in polynomial time.•We consider multiobjective variants of representation problems, and present polynomial time algorithms to solve them.•We present and discuss experimental results for all the problems.</description><subject>Algorithms</subject><subject>Computer Science</subject><subject>Dynamic programming</subject><subject>Facilities planning</subject><subject>Location analysis</subject><subject>Mathematical problems</subject><subject>Multiobjective discrete optimization</subject><subject>Operations Research</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Polynomials</subject><subject>Representation</subject><subject>Representations</subject><subject>Site selection</subject><subject>Studies</subject><subject>Threshold algorithm</subject><subject>Thresholds</subject><subject>Variability</subject><issn>0305-0548</issn><issn>1873-765X</issn><issn>0305-0548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kU9LAzEQxYMoWKsfwNuCFz1snWz-7C6eiqgVCoIoeAvZ3VmapU1qkhb005ta8eDBYSAw_F54b4aQcwoTClReD5PW-UkBVEwgNbADMqJVyfJSirdDMgIGIgfBq2NyEsIAqcqCjsj8GdceA9qoo3E2c30WF5hZZ_POrYzVEbssYMyMzRrjmgHbaLaYdSa0HiNmbh3Nynx-q0_JUa-XAc9-3jF5vb97uZ3l86eHx9vpPG-5lDFnXV-VKOu6aQUrNa-6PmVoeE2hqpAVrBRMCC2rptfJJ2PAqAQKWvaSc9mxMbna_7vQS7X2ZqX9h3LaqNl0rnYz4JyLVFua2Ms9u_bufYMhqlWyjsultug2QdFSFlBXRb1DL_6gg9t4m5IoKmtWgKBFnSi6p1rvQvDY_zqgoHa3UINKt1C7WyhInQKMyc1eg2krW4NehdagbbEzPi1Udc78o_4CMUiPNw</recordid><startdate>20151101</startdate><enddate>20151101</enddate><creator>Vaz, Daniel</creator><creator>Paquete, Luís</creator><creator>Fonseca, Carlos M.</creator><creator>Klamroth, Kathrin</creator><creator>Stiglmayr, Michael</creator><general>Elsevier Ltd</general><general>Pergamon Press Inc</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-2224-2185</orcidid><orcidid>https://orcid.org/0000-0001-5162-2457</orcidid><orcidid>https://orcid.org/0000-0001-7525-8901</orcidid></search><sort><creationdate>20151101</creationdate><title>Representation of the non-dominated set in biobjective discrete optimization</title><author>Vaz, Daniel ; Paquete, Luís ; Fonseca, Carlos M. ; Klamroth, Kathrin ; Stiglmayr, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-3df87e699bc537a48df101b491088e32375355a68bfa000330316010a6f6446d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Computer Science</topic><topic>Dynamic programming</topic><topic>Facilities planning</topic><topic>Location analysis</topic><topic>Mathematical problems</topic><topic>Multiobjective discrete optimization</topic><topic>Operations Research</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Polynomials</topic><topic>Representation</topic><topic>Representations</topic><topic>Site selection</topic><topic>Studies</topic><topic>Threshold algorithm</topic><topic>Thresholds</topic><topic>Variability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vaz, Daniel</creatorcontrib><creatorcontrib>Paquete, Luís</creatorcontrib><creatorcontrib>Fonseca, Carlos M.</creatorcontrib><creatorcontrib>Klamroth, Kathrin</creatorcontrib><creatorcontrib>Stiglmayr, Michael</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Computers &amp; operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vaz, Daniel</au><au>Paquete, Luís</au><au>Fonseca, Carlos M.</au><au>Klamroth, Kathrin</au><au>Stiglmayr, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Representation of the non-dominated set in biobjective discrete optimization</atitle><jtitle>Computers &amp; operations research</jtitle><date>2015-11-01</date><risdate>2015</risdate><volume>63</volume><spage>172</spage><epage>186</epage><pages>172-186</pages><issn>0305-0548</issn><eissn>1873-765X</eissn><eissn>0305-0548</eissn><coden>CMORAP</coden><abstract>This paper introduces several algorithms for finding a representative subset of the non-dominated point set of a biobjective discrete optimization problem with respect to uniformity, coverage and the ϵ-indicator. We consider the representation problem itself as multiobjective, trying to find a good compromise between these quality measures. These representation problems are formulated as particular facility location problems with a special location structure, which allows for polynomial-time algorithms in the biobjective case based on the principles of dynamic programming and threshold approaches. In addition, we show that several multiobjective variants of these representation problems are also solvable in polynomial time. Computational results obtained by these approaches on a wide range of randomly generated point sets are presented and discussed. •We formulate the representation problem in two dimensions for three different measures: uniformity, coverage, and є-indicator.•We present algorithms that solve the representation problems for the three measures in polynomial time.•We consider multiobjective variants of representation problems, and present polynomial time algorithms to solve them.•We present and discuss experimental results for all the problems.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.cor.2015.05.003</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-2224-2185</orcidid><orcidid>https://orcid.org/0000-0001-5162-2457</orcidid><orcidid>https://orcid.org/0000-0001-7525-8901</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-0548
ispartof Computers & operations research, 2015-11, Vol.63, p.172-186
issn 0305-0548
1873-765X
0305-0548
language eng
recordid cdi_hal_primary_oai_HAL_hal_04445555v1
source Elsevier ScienceDirect Journals Collection
subjects Algorithms
Computer Science
Dynamic programming
Facilities planning
Location analysis
Mathematical problems
Multiobjective discrete optimization
Operations Research
Optimization
Optimization algorithms
Polynomials
Representation
Representations
Site selection
Studies
Threshold algorithm
Thresholds
Variability
title Representation of the non-dominated set in biobjective discrete optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T14%3A10%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Representation%20of%20the%20non-dominated%20set%20in%20biobjective%20discrete%20optimization&rft.jtitle=Computers%20&%20operations%20research&rft.au=Vaz,%20Daniel&rft.date=2015-11-01&rft.volume=63&rft.spage=172&rft.epage=186&rft.pages=172-186&rft.issn=0305-0548&rft.eissn=1873-765X&rft.coden=CMORAP&rft_id=info:doi/10.1016/j.cor.2015.05.003&rft_dat=%3Cproquest_hal_p%3E3733397281%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1693205129&rft_id=info:pmid/&rft_els_id=S0305054815001185&rfr_iscdi=true