Identification of transcriptional modules linked to the drought response of Brassica napus during seed development and their mitigation by early biotic stress

In order to capture the drought impacts on seed quality acquisition in Brassica napus and its potential interaction with early biotic stress, seeds of the ‘Express’ genotype of oilseed rape were characterized from late embryogenesis to full maturity from plants submitted to reduced watering (WS) wit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physiologia plantarum 2024-01, Vol.176 (1), p.e14130-n/a
Hauptverfasser: Bianchetti, Grégoire, Clouet, Vanessa, Legeai, Fabrice, Baron, Cécile, Gazengel, Kévin, Vu, Benoit Ly, Baud, Sébastien, To, Alexandra, Manzanares‐Dauleux, Maria J., Buitink, Julia, Nesi, Nathalie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 1
container_start_page e14130
container_title Physiologia plantarum
container_volume 176
creator Bianchetti, Grégoire
Clouet, Vanessa
Legeai, Fabrice
Baron, Cécile
Gazengel, Kévin
Vu, Benoit Ly
Baud, Sébastien
To, Alexandra
Manzanares‐Dauleux, Maria J.
Buitink, Julia
Nesi, Nathalie
description In order to capture the drought impacts on seed quality acquisition in Brassica napus and its potential interaction with early biotic stress, seeds of the ‘Express’ genotype of oilseed rape were characterized from late embryogenesis to full maturity from plants submitted to reduced watering (WS) with or without pre‐occurring inoculation by the telluric pathogen Plasmodiophora brassicae (Pb + WS or Pb, respectively), and compared to control conditions (C). Drought as a single constraint led to significantly lower accumulation of lipids, higher protein content and reduced longevity of the WS‐treated seeds. In contrast, when water shortage was preceded by clubroot infection, these phenotypic differences were completely abolished despite the upregulation of the drought sensor RD20. A weighted gene co‐expression network of seed development in oilseed rape was generated using 72 transcriptomes from developing seeds from the four treatments and identified 33 modules. Module 29 was highly enriched in heat shock proteins and chaperones that showed a stronger upregulation in Pb + WS compared to the WS condition, pointing to a possible priming effect by the early P. brassicae infection on seed quality acquisition. Module 13 was enriched with genes encoding 12S and 2S seed storage proteins, with the latter being strongly upregulated under WS conditions. Cis‐element promotor enrichment identified PEI1/TZF6, FUS3 and bZIP68 as putative regulators significantly upregulated upon WS compared to Pb + WS. Our results provide a temporal co‐expression atlas of seed development in oilseed rape and will serve as a resource to characterize the plant response towards combinations of biotic and abiotic stresses.
doi_str_mv 10.1111/ppl.14130
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04443649v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2931389281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3820-6bdde55aacd45fef5a263036ee03149006ccd96924b48796699c74508cd95eba3</originalsourceid><addsrcrecordid>eNp1kcFu1DAQhi0EokvhwAsgS1zgkNaOHW98bCuglVaiBzhbjj3ZdXHiYDtF-zI8Kw4pRULCF0ujb74ZzY_Qa0rOaHnn0-TPKKeMPEEbyqSsGGn4U7QhhNFKMro9QS9SuiOECkHr5-iEtS2vORUb9PPGwphd74zOLow49DhHPSYT3bQUtMdDsLOHhL0bv4HFOeB8AGxjmPeHjCOkKYwJls7LqFMqJjzqaU7YztGNe5ygdFm4Bx-moQzDerSLwkU8uOz26-DuiEFHf8SdC9kZnHIxp5foWa99glcP_yn6-vHDl6vravf5083Vxa4yrK1JJTproWm0NpY3PfSNrgUjTACUC3BJiDDGSiFr3vF2K4WQ0mx5Q9pSbaDT7BS9X70H7dUU3aDjUQXt1PXFTi01wjlngst7Wth3KzvF8H2GlNXgkgHv9QhhTooR0dRbVlNe0Lf_oHdhjuWoSdUlF9bKuqV_h5sYUorQP25AiVoCViVg9Tvgwr55MM7dAPaR_JNoAc5X4IfzcPy_Sd3e7lblLxXXsZw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2931389281</pqid></control><display><type>article</type><title>Identification of transcriptional modules linked to the drought response of Brassica napus during seed development and their mitigation by early biotic stress</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Bianchetti, Grégoire ; Clouet, Vanessa ; Legeai, Fabrice ; Baron, Cécile ; Gazengel, Kévin ; Vu, Benoit Ly ; Baud, Sébastien ; To, Alexandra ; Manzanares‐Dauleux, Maria J. ; Buitink, Julia ; Nesi, Nathalie</creator><creatorcontrib>Bianchetti, Grégoire ; Clouet, Vanessa ; Legeai, Fabrice ; Baron, Cécile ; Gazengel, Kévin ; Vu, Benoit Ly ; Baud, Sébastien ; To, Alexandra ; Manzanares‐Dauleux, Maria J. ; Buitink, Julia ; Nesi, Nathalie</creatorcontrib><description>In order to capture the drought impacts on seed quality acquisition in Brassica napus and its potential interaction with early biotic stress, seeds of the ‘Express’ genotype of oilseed rape were characterized from late embryogenesis to full maturity from plants submitted to reduced watering (WS) with or without pre‐occurring inoculation by the telluric pathogen Plasmodiophora brassicae (Pb + WS or Pb, respectively), and compared to control conditions (C). Drought as a single constraint led to significantly lower accumulation of lipids, higher protein content and reduced longevity of the WS‐treated seeds. In contrast, when water shortage was preceded by clubroot infection, these phenotypic differences were completely abolished despite the upregulation of the drought sensor RD20. A weighted gene co‐expression network of seed development in oilseed rape was generated using 72 transcriptomes from developing seeds from the four treatments and identified 33 modules. Module 29 was highly enriched in heat shock proteins and chaperones that showed a stronger upregulation in Pb + WS compared to the WS condition, pointing to a possible priming effect by the early P. brassicae infection on seed quality acquisition. Module 13 was enriched with genes encoding 12S and 2S seed storage proteins, with the latter being strongly upregulated under WS conditions. Cis‐element promotor enrichment identified PEI1/TZF6, FUS3 and bZIP68 as putative regulators significantly upregulated upon WS compared to Pb + WS. Our results provide a temporal co‐expression atlas of seed development in oilseed rape and will serve as a resource to characterize the plant response towards combinations of biotic and abiotic stresses.</description><identifier>ISSN: 0031-9317</identifier><identifier>EISSN: 1399-3054</identifier><identifier>DOI: 10.1111/ppl.14130</identifier><identifier>PMID: 38842416</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Brassica ; Brassica napus ; Brassica napus - genetics ; Brassica napus - physiology ; Clubroot ; Drought ; Droughts ; Embryogenesis ; Embryonic growth stage ; Enrichment ; Environmental impact ; Gene expression ; Gene Expression Regulation, Plant ; Genotypes ; Heat shock proteins ; Inoculation ; Life Sciences ; Lipids ; Modules ; Nutrient content ; Oilseeds ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plasmodiophora brassicae ; Plasmodiophorida - physiology ; Rape plants ; Rapeseed ; Seeds ; Seeds - genetics ; Seeds - growth &amp; development ; Storage proteins ; Stress, Physiological - genetics ; Transcriptome - genetics ; Transcriptomes ; Up-regulation ; Water shortages</subject><ispartof>Physiologia plantarum, 2024-01, Vol.176 (1), p.e14130-n/a</ispartof><rights>2024 The Authors. published by John Wiley &amp; Sons Ltd on behalf of Scandinavian Plant Physiology Society.</rights><rights>2024 The Authors. Physiologia Plantarum published by John Wiley &amp; Sons Ltd on behalf of Scandinavian Plant Physiology Society.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution - NonCommercial - NoDerivatives</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3820-6bdde55aacd45fef5a263036ee03149006ccd96924b48796699c74508cd95eba3</cites><orcidid>0000-0002-6452-0393 ; 0000-0002-2552-472X ; 0000-0003-1192-982X ; 0000-0001-9054-2281 ; 0000-0002-1457-764X ; 0000-0002-5507-327X ; 0000-0002-6472-4839 ; 0000-0002-3713-370X ; 0000-0001-8541-7291 ; 0000-0002-0204-4045</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fppl.14130$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fppl.14130$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,315,781,785,886,1418,4025,27927,27928,27929,45578,45579</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38842416$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04443649$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bianchetti, Grégoire</creatorcontrib><creatorcontrib>Clouet, Vanessa</creatorcontrib><creatorcontrib>Legeai, Fabrice</creatorcontrib><creatorcontrib>Baron, Cécile</creatorcontrib><creatorcontrib>Gazengel, Kévin</creatorcontrib><creatorcontrib>Vu, Benoit Ly</creatorcontrib><creatorcontrib>Baud, Sébastien</creatorcontrib><creatorcontrib>To, Alexandra</creatorcontrib><creatorcontrib>Manzanares‐Dauleux, Maria J.</creatorcontrib><creatorcontrib>Buitink, Julia</creatorcontrib><creatorcontrib>Nesi, Nathalie</creatorcontrib><title>Identification of transcriptional modules linked to the drought response of Brassica napus during seed development and their mitigation by early biotic stress</title><title>Physiologia plantarum</title><addtitle>Physiol Plant</addtitle><description>In order to capture the drought impacts on seed quality acquisition in Brassica napus and its potential interaction with early biotic stress, seeds of the ‘Express’ genotype of oilseed rape were characterized from late embryogenesis to full maturity from plants submitted to reduced watering (WS) with or without pre‐occurring inoculation by the telluric pathogen Plasmodiophora brassicae (Pb + WS or Pb, respectively), and compared to control conditions (C). Drought as a single constraint led to significantly lower accumulation of lipids, higher protein content and reduced longevity of the WS‐treated seeds. In contrast, when water shortage was preceded by clubroot infection, these phenotypic differences were completely abolished despite the upregulation of the drought sensor RD20. A weighted gene co‐expression network of seed development in oilseed rape was generated using 72 transcriptomes from developing seeds from the four treatments and identified 33 modules. Module 29 was highly enriched in heat shock proteins and chaperones that showed a stronger upregulation in Pb + WS compared to the WS condition, pointing to a possible priming effect by the early P. brassicae infection on seed quality acquisition. Module 13 was enriched with genes encoding 12S and 2S seed storage proteins, with the latter being strongly upregulated under WS conditions. Cis‐element promotor enrichment identified PEI1/TZF6, FUS3 and bZIP68 as putative regulators significantly upregulated upon WS compared to Pb + WS. Our results provide a temporal co‐expression atlas of seed development in oilseed rape and will serve as a resource to characterize the plant response towards combinations of biotic and abiotic stresses.</description><subject>Brassica</subject><subject>Brassica napus</subject><subject>Brassica napus - genetics</subject><subject>Brassica napus - physiology</subject><subject>Clubroot</subject><subject>Drought</subject><subject>Droughts</subject><subject>Embryogenesis</subject><subject>Embryonic growth stage</subject><subject>Enrichment</subject><subject>Environmental impact</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genotypes</subject><subject>Heat shock proteins</subject><subject>Inoculation</subject><subject>Life Sciences</subject><subject>Lipids</subject><subject>Modules</subject><subject>Nutrient content</subject><subject>Oilseeds</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plasmodiophora brassicae</subject><subject>Plasmodiophorida - physiology</subject><subject>Rape plants</subject><subject>Rapeseed</subject><subject>Seeds</subject><subject>Seeds - genetics</subject><subject>Seeds - growth &amp; development</subject><subject>Storage proteins</subject><subject>Stress, Physiological - genetics</subject><subject>Transcriptome - genetics</subject><subject>Transcriptomes</subject><subject>Up-regulation</subject><subject>Water shortages</subject><issn>0031-9317</issn><issn>1399-3054</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNp1kcFu1DAQhi0EokvhwAsgS1zgkNaOHW98bCuglVaiBzhbjj3ZdXHiYDtF-zI8Kw4pRULCF0ujb74ZzY_Qa0rOaHnn0-TPKKeMPEEbyqSsGGn4U7QhhNFKMro9QS9SuiOECkHr5-iEtS2vORUb9PPGwphd74zOLow49DhHPSYT3bQUtMdDsLOHhL0bv4HFOeB8AGxjmPeHjCOkKYwJls7LqFMqJjzqaU7YztGNe5ygdFm4Bx-moQzDerSLwkU8uOz26-DuiEFHf8SdC9kZnHIxp5foWa99glcP_yn6-vHDl6vravf5083Vxa4yrK1JJTproWm0NpY3PfSNrgUjTACUC3BJiDDGSiFr3vF2K4WQ0mx5Q9pSbaDT7BS9X70H7dUU3aDjUQXt1PXFTi01wjlngst7Wth3KzvF8H2GlNXgkgHv9QhhTooR0dRbVlNe0Lf_oHdhjuWoSdUlF9bKuqV_h5sYUorQP25AiVoCViVg9Tvgwr55MM7dAPaR_JNoAc5X4IfzcPy_Sd3e7lblLxXXsZw</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Bianchetti, Grégoire</creator><creator>Clouet, Vanessa</creator><creator>Legeai, Fabrice</creator><creator>Baron, Cécile</creator><creator>Gazengel, Kévin</creator><creator>Vu, Benoit Ly</creator><creator>Baud, Sébastien</creator><creator>To, Alexandra</creator><creator>Manzanares‐Dauleux, Maria J.</creator><creator>Buitink, Julia</creator><creator>Nesi, Nathalie</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-6452-0393</orcidid><orcidid>https://orcid.org/0000-0002-2552-472X</orcidid><orcidid>https://orcid.org/0000-0003-1192-982X</orcidid><orcidid>https://orcid.org/0000-0001-9054-2281</orcidid><orcidid>https://orcid.org/0000-0002-1457-764X</orcidid><orcidid>https://orcid.org/0000-0002-5507-327X</orcidid><orcidid>https://orcid.org/0000-0002-6472-4839</orcidid><orcidid>https://orcid.org/0000-0002-3713-370X</orcidid><orcidid>https://orcid.org/0000-0001-8541-7291</orcidid><orcidid>https://orcid.org/0000-0002-0204-4045</orcidid></search><sort><creationdate>202401</creationdate><title>Identification of transcriptional modules linked to the drought response of Brassica napus during seed development and their mitigation by early biotic stress</title><author>Bianchetti, Grégoire ; Clouet, Vanessa ; Legeai, Fabrice ; Baron, Cécile ; Gazengel, Kévin ; Vu, Benoit Ly ; Baud, Sébastien ; To, Alexandra ; Manzanares‐Dauleux, Maria J. ; Buitink, Julia ; Nesi, Nathalie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3820-6bdde55aacd45fef5a263036ee03149006ccd96924b48796699c74508cd95eba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Brassica</topic><topic>Brassica napus</topic><topic>Brassica napus - genetics</topic><topic>Brassica napus - physiology</topic><topic>Clubroot</topic><topic>Drought</topic><topic>Droughts</topic><topic>Embryogenesis</topic><topic>Embryonic growth stage</topic><topic>Enrichment</topic><topic>Environmental impact</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genotypes</topic><topic>Heat shock proteins</topic><topic>Inoculation</topic><topic>Life Sciences</topic><topic>Lipids</topic><topic>Modules</topic><topic>Nutrient content</topic><topic>Oilseeds</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plasmodiophora brassicae</topic><topic>Plasmodiophorida - physiology</topic><topic>Rape plants</topic><topic>Rapeseed</topic><topic>Seeds</topic><topic>Seeds - genetics</topic><topic>Seeds - growth &amp; development</topic><topic>Storage proteins</topic><topic>Stress, Physiological - genetics</topic><topic>Transcriptome - genetics</topic><topic>Transcriptomes</topic><topic>Up-regulation</topic><topic>Water shortages</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bianchetti, Grégoire</creatorcontrib><creatorcontrib>Clouet, Vanessa</creatorcontrib><creatorcontrib>Legeai, Fabrice</creatorcontrib><creatorcontrib>Baron, Cécile</creatorcontrib><creatorcontrib>Gazengel, Kévin</creatorcontrib><creatorcontrib>Vu, Benoit Ly</creatorcontrib><creatorcontrib>Baud, Sébastien</creatorcontrib><creatorcontrib>To, Alexandra</creatorcontrib><creatorcontrib>Manzanares‐Dauleux, Maria J.</creatorcontrib><creatorcontrib>Buitink, Julia</creatorcontrib><creatorcontrib>Nesi, Nathalie</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Physiologia plantarum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bianchetti, Grégoire</au><au>Clouet, Vanessa</au><au>Legeai, Fabrice</au><au>Baron, Cécile</au><au>Gazengel, Kévin</au><au>Vu, Benoit Ly</au><au>Baud, Sébastien</au><au>To, Alexandra</au><au>Manzanares‐Dauleux, Maria J.</au><au>Buitink, Julia</au><au>Nesi, Nathalie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of transcriptional modules linked to the drought response of Brassica napus during seed development and their mitigation by early biotic stress</atitle><jtitle>Physiologia plantarum</jtitle><addtitle>Physiol Plant</addtitle><date>2024-01</date><risdate>2024</risdate><volume>176</volume><issue>1</issue><spage>e14130</spage><epage>n/a</epage><pages>e14130-n/a</pages><issn>0031-9317</issn><eissn>1399-3054</eissn><abstract>In order to capture the drought impacts on seed quality acquisition in Brassica napus and its potential interaction with early biotic stress, seeds of the ‘Express’ genotype of oilseed rape were characterized from late embryogenesis to full maturity from plants submitted to reduced watering (WS) with or without pre‐occurring inoculation by the telluric pathogen Plasmodiophora brassicae (Pb + WS or Pb, respectively), and compared to control conditions (C). Drought as a single constraint led to significantly lower accumulation of lipids, higher protein content and reduced longevity of the WS‐treated seeds. In contrast, when water shortage was preceded by clubroot infection, these phenotypic differences were completely abolished despite the upregulation of the drought sensor RD20. A weighted gene co‐expression network of seed development in oilseed rape was generated using 72 transcriptomes from developing seeds from the four treatments and identified 33 modules. Module 29 was highly enriched in heat shock proteins and chaperones that showed a stronger upregulation in Pb + WS compared to the WS condition, pointing to a possible priming effect by the early P. brassicae infection on seed quality acquisition. Module 13 was enriched with genes encoding 12S and 2S seed storage proteins, with the latter being strongly upregulated under WS conditions. Cis‐element promotor enrichment identified PEI1/TZF6, FUS3 and bZIP68 as putative regulators significantly upregulated upon WS compared to Pb + WS. Our results provide a temporal co‐expression atlas of seed development in oilseed rape and will serve as a resource to characterize the plant response towards combinations of biotic and abiotic stresses.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>38842416</pmid><doi>10.1111/ppl.14130</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-6452-0393</orcidid><orcidid>https://orcid.org/0000-0002-2552-472X</orcidid><orcidid>https://orcid.org/0000-0003-1192-982X</orcidid><orcidid>https://orcid.org/0000-0001-9054-2281</orcidid><orcidid>https://orcid.org/0000-0002-1457-764X</orcidid><orcidid>https://orcid.org/0000-0002-5507-327X</orcidid><orcidid>https://orcid.org/0000-0002-6472-4839</orcidid><orcidid>https://orcid.org/0000-0002-3713-370X</orcidid><orcidid>https://orcid.org/0000-0001-8541-7291</orcidid><orcidid>https://orcid.org/0000-0002-0204-4045</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9317
ispartof Physiologia plantarum, 2024-01, Vol.176 (1), p.e14130-n/a
issn 0031-9317
1399-3054
language eng
recordid cdi_hal_primary_oai_HAL_hal_04443649v1
source MEDLINE; Access via Wiley Online Library
subjects Brassica
Brassica napus
Brassica napus - genetics
Brassica napus - physiology
Clubroot
Drought
Droughts
Embryogenesis
Embryonic growth stage
Enrichment
Environmental impact
Gene expression
Gene Expression Regulation, Plant
Genotypes
Heat shock proteins
Inoculation
Life Sciences
Lipids
Modules
Nutrient content
Oilseeds
Plant Proteins - genetics
Plant Proteins - metabolism
Plasmodiophora brassicae
Plasmodiophorida - physiology
Rape plants
Rapeseed
Seeds
Seeds - genetics
Seeds - growth & development
Storage proteins
Stress, Physiological - genetics
Transcriptome - genetics
Transcriptomes
Up-regulation
Water shortages
title Identification of transcriptional modules linked to the drought response of Brassica napus during seed development and their mitigation by early biotic stress
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T05%3A37%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20transcriptional%20modules%20linked%20to%20the%20drought%20response%20of%20Brassica%20napus%20during%20seed%20development%20and%20their%20mitigation%20by%20early%20biotic%20stress&rft.jtitle=Physiologia%20plantarum&rft.au=Bianchetti,%20Gr%C3%A9goire&rft.date=2024-01&rft.volume=176&rft.issue=1&rft.spage=e14130&rft.epage=n/a&rft.pages=e14130-n/a&rft.issn=0031-9317&rft.eissn=1399-3054&rft_id=info:doi/10.1111/ppl.14130&rft_dat=%3Cproquest_hal_p%3E2931389281%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2931389281&rft_id=info:pmid/38842416&rfr_iscdi=true