Physical modelling of dust polarization from magnetically enhanced radiative torque alignment in protostellar cores with polaris

ABSTRACT Magnetic fields (B) are an important factor controlling the star-formation process. The leading method to observe B orientation is to use polarized thermal emission from aligned dust grains. In dense environments such as protostellar cores, however, dust grains may be inefficiently aligned...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2023-02, Vol.520 (3), p.3788-3826
Hauptverfasser: Giang, Nguyen Chau, Hoang, Thiem, Kim, Jeong-Gyu, Tram, Le Ngoc
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3826
container_issue 3
container_start_page 3788
container_title Monthly notices of the Royal Astronomical Society
container_volume 520
creator Giang, Nguyen Chau
Hoang, Thiem
Kim, Jeong-Gyu
Tram, Le Ngoc
description ABSTRACT Magnetic fields (B) are an important factor controlling the star-formation process. The leading method to observe B orientation is to use polarized thermal emission from aligned dust grains. In dense environments such as protostellar cores, however, dust grains may be inefficiently aligned owing to strong gas randomizations, making the use of dust polarization to trace Buncertain. The study of Hoang and Lazarian in 2016 demonstrated that grain alignment by radiative torques is enhanced if dust grains contain embedded iron inclusions. Here we extend the polaris code to study the effect of iron inclusions on grain alignment and thermal dust polarization towards a protostellar core, assuming uniform B. We found that paramagnetic grains produce a low polarization degree of $p \sim 1{{\ \rm per\ cent}}$ in the envelope and a negligible $p \ll 1{{\ \rm per\ cent}}$ in the central region owing to the loss of grain alignment. In contrast, grains with a high level of iron inclusions have perfect alignment and produce a high $p \sim 40{{\ \rm per\ cent}}$ in the envelope and a low $p \le 10{{\ \rm per\ cent}}$ in the central region. Grains with a moderate level of iron inclusions induce the polarization flipping from P ‖ B at millimetre to P ⊥ B at submillimetre wavelengths owing to the change in the internal alignment caused by slow internal relaxation. The weak alignment of very large grains with $a \ge 10\, {\mu \rm {m}}$ reduces dichroic extinction efficiency at submillimetre wavelengths. We found a positive correlation between p and the level of iron inclusions, which introduces a new option to constrain the abundance of solid iron locked in dust through dust polarimetry.
doi_str_mv 10.1093/mnras/stad020
format Article
fullrecord <record><control><sourceid>oup_TOX</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04443005v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/mnras/stad020</oup_id><sourcerecordid>10.1093/mnras/stad020</sourcerecordid><originalsourceid>FETCH-LOGICAL-c304t-1dc4e2ac678a1447e1d7c89869dec43256737e98b8c1a8aca683989018cbee603</originalsourceid><addsrcrecordid>eNqF0DFPwzAQBWALgUQpjOweYQi148RxxqoCilQJBpijq-00Ro5dbLeoTPx0UlqxMp10-u5J9xC6puSOkppNehcgTmICRXJygkaU8TLLa85P0YgQVmaiovQcXcT4TggpWM5H6Pul20UjweLeK22tcSvsW6w2MeG1txDMFyTjHW6D73EPK6fTntsd1q4DJ7XCAZQZ0Fbj5MPHRmOwZuV67RI2Dq-DTz6mIRsClj7oiD9N6o7p8RKdtWCjvjrOMXp7uH-dzbPF8-PTbLrIJCNFyqiShc5B8koALYpKU1VJUQteKy2HV0pesUrXYikkBQESuGC1qAkVcqk1J2yMbg-5HdhmHUwPYdd4MM18umj2O1IUBSOk3NLBZgcrg48x6PbvgJJmX3XzW3VzrHrwNwfvN-t_6A97iIVA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Physical modelling of dust polarization from magnetically enhanced radiative torque alignment in protostellar cores with polaris</title><source>Oxford Journals Open Access Collection</source><creator>Giang, Nguyen Chau ; Hoang, Thiem ; Kim, Jeong-Gyu ; Tram, Le Ngoc</creator><creatorcontrib>Giang, Nguyen Chau ; Hoang, Thiem ; Kim, Jeong-Gyu ; Tram, Le Ngoc</creatorcontrib><description>ABSTRACT Magnetic fields (B) are an important factor controlling the star-formation process. The leading method to observe B orientation is to use polarized thermal emission from aligned dust grains. In dense environments such as protostellar cores, however, dust grains may be inefficiently aligned owing to strong gas randomizations, making the use of dust polarization to trace Buncertain. The study of Hoang and Lazarian in 2016 demonstrated that grain alignment by radiative torques is enhanced if dust grains contain embedded iron inclusions. Here we extend the polaris code to study the effect of iron inclusions on grain alignment and thermal dust polarization towards a protostellar core, assuming uniform B. We found that paramagnetic grains produce a low polarization degree of $p \sim 1{{\ \rm per\ cent}}$ in the envelope and a negligible $p \ll 1{{\ \rm per\ cent}}$ in the central region owing to the loss of grain alignment. In contrast, grains with a high level of iron inclusions have perfect alignment and produce a high $p \sim 40{{\ \rm per\ cent}}$ in the envelope and a low $p \le 10{{\ \rm per\ cent}}$ in the central region. Grains with a moderate level of iron inclusions induce the polarization flipping from P ‖ B at millimetre to P ⊥ B at submillimetre wavelengths owing to the change in the internal alignment caused by slow internal relaxation. The weak alignment of very large grains with $a \ge 10\, {\mu \rm {m}}$ reduces dichroic extinction efficiency at submillimetre wavelengths. We found a positive correlation between p and the level of iron inclusions, which introduces a new option to constrain the abundance of solid iron locked in dust through dust polarimetry.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1093/mnras/stad020</identifier><language>eng</language><publisher>Oxford University Press</publisher><subject>Sciences of the Universe</subject><ispartof>Monthly notices of the Royal Astronomical Society, 2023-02, Vol.520 (3), p.3788-3826</ispartof><rights>2023 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society 2023</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c304t-1dc4e2ac678a1447e1d7c89869dec43256737e98b8c1a8aca683989018cbee603</citedby><cites>FETCH-LOGICAL-c304t-1dc4e2ac678a1447e1d7c89869dec43256737e98b8c1a8aca683989018cbee603</cites><orcidid>0000-0002-3681-671X ; 0000-0003-2017-0982</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,1598,27901,27902</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/mnras/stad020$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttps://hal.science/hal-04443005$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Giang, Nguyen Chau</creatorcontrib><creatorcontrib>Hoang, Thiem</creatorcontrib><creatorcontrib>Kim, Jeong-Gyu</creatorcontrib><creatorcontrib>Tram, Le Ngoc</creatorcontrib><title>Physical modelling of dust polarization from magnetically enhanced radiative torque alignment in protostellar cores with polaris</title><title>Monthly notices of the Royal Astronomical Society</title><description>ABSTRACT Magnetic fields (B) are an important factor controlling the star-formation process. The leading method to observe B orientation is to use polarized thermal emission from aligned dust grains. In dense environments such as protostellar cores, however, dust grains may be inefficiently aligned owing to strong gas randomizations, making the use of dust polarization to trace Buncertain. The study of Hoang and Lazarian in 2016 demonstrated that grain alignment by radiative torques is enhanced if dust grains contain embedded iron inclusions. Here we extend the polaris code to study the effect of iron inclusions on grain alignment and thermal dust polarization towards a protostellar core, assuming uniform B. We found that paramagnetic grains produce a low polarization degree of $p \sim 1{{\ \rm per\ cent}}$ in the envelope and a negligible $p \ll 1{{\ \rm per\ cent}}$ in the central region owing to the loss of grain alignment. In contrast, grains with a high level of iron inclusions have perfect alignment and produce a high $p \sim 40{{\ \rm per\ cent}}$ in the envelope and a low $p \le 10{{\ \rm per\ cent}}$ in the central region. Grains with a moderate level of iron inclusions induce the polarization flipping from P ‖ B at millimetre to P ⊥ B at submillimetre wavelengths owing to the change in the internal alignment caused by slow internal relaxation. The weak alignment of very large grains with $a \ge 10\, {\mu \rm {m}}$ reduces dichroic extinction efficiency at submillimetre wavelengths. We found a positive correlation between p and the level of iron inclusions, which introduces a new option to constrain the abundance of solid iron locked in dust through dust polarimetry.</description><subject>Sciences of the Universe</subject><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqF0DFPwzAQBWALgUQpjOweYQi148RxxqoCilQJBpijq-00Ro5dbLeoTPx0UlqxMp10-u5J9xC6puSOkppNehcgTmICRXJygkaU8TLLa85P0YgQVmaiovQcXcT4TggpWM5H6Pul20UjweLeK22tcSvsW6w2MeG1txDMFyTjHW6D73EPK6fTntsd1q4DJ7XCAZQZ0Fbj5MPHRmOwZuV67RI2Dq-DTz6mIRsClj7oiD9N6o7p8RKdtWCjvjrOMXp7uH-dzbPF8-PTbLrIJCNFyqiShc5B8koALYpKU1VJUQteKy2HV0pesUrXYikkBQESuGC1qAkVcqk1J2yMbg-5HdhmHUwPYdd4MM18umj2O1IUBSOk3NLBZgcrg48x6PbvgJJmX3XzW3VzrHrwNwfvN-t_6A97iIVA</recordid><startdate>20230215</startdate><enddate>20230215</enddate><creator>Giang, Nguyen Chau</creator><creator>Hoang, Thiem</creator><creator>Kim, Jeong-Gyu</creator><creator>Tram, Le Ngoc</creator><general>Oxford University Press</general><general>Oxford University Press (OUP): Policy P - Oxford Open Option A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-3681-671X</orcidid><orcidid>https://orcid.org/0000-0003-2017-0982</orcidid></search><sort><creationdate>20230215</creationdate><title>Physical modelling of dust polarization from magnetically enhanced radiative torque alignment in protostellar cores with polaris</title><author>Giang, Nguyen Chau ; Hoang, Thiem ; Kim, Jeong-Gyu ; Tram, Le Ngoc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c304t-1dc4e2ac678a1447e1d7c89869dec43256737e98b8c1a8aca683989018cbee603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Sciences of the Universe</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Giang, Nguyen Chau</creatorcontrib><creatorcontrib>Hoang, Thiem</creatorcontrib><creatorcontrib>Kim, Jeong-Gyu</creatorcontrib><creatorcontrib>Tram, Le Ngoc</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Giang, Nguyen Chau</au><au>Hoang, Thiem</au><au>Kim, Jeong-Gyu</au><au>Tram, Le Ngoc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physical modelling of dust polarization from magnetically enhanced radiative torque alignment in protostellar cores with polaris</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><date>2023-02-15</date><risdate>2023</risdate><volume>520</volume><issue>3</issue><spage>3788</spage><epage>3826</epage><pages>3788-3826</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract>ABSTRACT Magnetic fields (B) are an important factor controlling the star-formation process. The leading method to observe B orientation is to use polarized thermal emission from aligned dust grains. In dense environments such as protostellar cores, however, dust grains may be inefficiently aligned owing to strong gas randomizations, making the use of dust polarization to trace Buncertain. The study of Hoang and Lazarian in 2016 demonstrated that grain alignment by radiative torques is enhanced if dust grains contain embedded iron inclusions. Here we extend the polaris code to study the effect of iron inclusions on grain alignment and thermal dust polarization towards a protostellar core, assuming uniform B. We found that paramagnetic grains produce a low polarization degree of $p \sim 1{{\ \rm per\ cent}}$ in the envelope and a negligible $p \ll 1{{\ \rm per\ cent}}$ in the central region owing to the loss of grain alignment. In contrast, grains with a high level of iron inclusions have perfect alignment and produce a high $p \sim 40{{\ \rm per\ cent}}$ in the envelope and a low $p \le 10{{\ \rm per\ cent}}$ in the central region. Grains with a moderate level of iron inclusions induce the polarization flipping from P ‖ B at millimetre to P ⊥ B at submillimetre wavelengths owing to the change in the internal alignment caused by slow internal relaxation. The weak alignment of very large grains with $a \ge 10\, {\mu \rm {m}}$ reduces dichroic extinction efficiency at submillimetre wavelengths. We found a positive correlation between p and the level of iron inclusions, which introduces a new option to constrain the abundance of solid iron locked in dust through dust polarimetry.</abstract><pub>Oxford University Press</pub><doi>10.1093/mnras/stad020</doi><tpages>39</tpages><orcidid>https://orcid.org/0000-0002-3681-671X</orcidid><orcidid>https://orcid.org/0000-0003-2017-0982</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0035-8711
ispartof Monthly notices of the Royal Astronomical Society, 2023-02, Vol.520 (3), p.3788-3826
issn 0035-8711
1365-2966
language eng
recordid cdi_hal_primary_oai_HAL_hal_04443005v1
source Oxford Journals Open Access Collection
subjects Sciences of the Universe
title Physical modelling of dust polarization from magnetically enhanced radiative torque alignment in protostellar cores with polaris
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T20%3A11%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physical%20modelling%20of%20dust%20polarization%20from%20magnetically%20enhanced%20radiative%20torque%20alignment%20in%20protostellar%20cores%20with%20polaris&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Giang,%20Nguyen%20Chau&rft.date=2023-02-15&rft.volume=520&rft.issue=3&rft.spage=3788&rft.epage=3826&rft.pages=3788-3826&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1093/mnras/stad020&rft_dat=%3Coup_TOX%3E10.1093/mnras/stad020%3C/oup_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/mnras/stad020&rfr_iscdi=true