The EWMA Heston model

This paper introduces the exponentially weighted moving average (EWMA) Heston model, a Markovian stochastic volatility model able to capture a wide range of empirical features related to volatility dynamics while being more tractable for simulations than rough volatility models based on fractional p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quantitative finance 2022-11, Vol.23 (1), p.71-93
1. Verfasser: Parent, Léo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 93
container_issue 1
container_start_page 71
container_title Quantitative finance
container_volume 23
creator Parent, Léo
description This paper introduces the exponentially weighted moving average (EWMA) Heston model, a Markovian stochastic volatility model able to capture a wide range of empirical features related to volatility dynamics while being more tractable for simulations than rough volatility models based on fractional processes. After presenting the model and its principal characteristics, our analysis focuses on the use of its associated Euler-discretization scheme as a time-series generator for Monte-Carlo simulations. Using this discretization scheme, and on the basis of S&P500 empirical time series, we show that the EWMA Heston model is overall consistent with market data, making it a credible alternative to other existing stochastic volatility models. Keywords: tohsti voltility modelD reston modelD qudrti rough reston modelD umh e'etD timeEreversl symmetryD voltility distriutionD returns distriutionF JEL classication: gISD gQPD qIHD qIRD qIUF
format Article
fullrecord <record><control><sourceid>hal</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04431111v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_04431111v1</sourcerecordid><originalsourceid>FETCH-hal_primary_oai_HAL_hal_04431111v13</originalsourceid><addsrcrecordid>eNpjYuA0NDGz1DU3szRjgbMtLDgYuIqLswwMDE0NDCw5GURDMlIVXMN9HRU8UotL8vMUcvNTUnN4GFjTEnOKU3mhNDeDpptriLOHbkZiTnxBUWZuYlFlfH5iZryHo088SMzAxMTYEAjKDI1JUQsAR1MtLw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The EWMA Heston model</title><source>Business Source Complete</source><source>Taylor &amp; Francis:Master (3349 titles)</source><creator>Parent, Léo</creator><creatorcontrib>Parent, Léo</creatorcontrib><description>This paper introduces the exponentially weighted moving average (EWMA) Heston model, a Markovian stochastic volatility model able to capture a wide range of empirical features related to volatility dynamics while being more tractable for simulations than rough volatility models based on fractional processes. After presenting the model and its principal characteristics, our analysis focuses on the use of its associated Euler-discretization scheme as a time-series generator for Monte-Carlo simulations. Using this discretization scheme, and on the basis of S&amp;P500 empirical time series, we show that the EWMA Heston model is overall consistent with market data, making it a credible alternative to other existing stochastic volatility models. Keywords: tohsti voltility modelD reston modelD qudrti rough reston modelD umh e'etD timeEreversl symmetryD voltility distriutionD returns distriutionF JEL classication: gISD gQPD qIHD qIRD qIUF</description><identifier>ISSN: 1469-7688</identifier><identifier>EISSN: 1469-7696</identifier><language>eng</language><publisher>Taylor &amp; Francis (Routledge)</publisher><subject>Quantitative Finance</subject><ispartof>Quantitative finance, 2022-11, Vol.23 (1), p.71-93</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0009-0004-0386-2260 ; 0009-0004-0386-2260</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04431111$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Parent, Léo</creatorcontrib><title>The EWMA Heston model</title><title>Quantitative finance</title><description>This paper introduces the exponentially weighted moving average (EWMA) Heston model, a Markovian stochastic volatility model able to capture a wide range of empirical features related to volatility dynamics while being more tractable for simulations than rough volatility models based on fractional processes. After presenting the model and its principal characteristics, our analysis focuses on the use of its associated Euler-discretization scheme as a time-series generator for Monte-Carlo simulations. Using this discretization scheme, and on the basis of S&amp;P500 empirical time series, we show that the EWMA Heston model is overall consistent with market data, making it a credible alternative to other existing stochastic volatility models. Keywords: tohsti voltility modelD reston modelD qudrti rough reston modelD umh e'etD timeEreversl symmetryD voltility distriutionD returns distriutionF JEL classication: gISD gQPD qIHD qIRD qIUF</description><subject>Quantitative Finance</subject><issn>1469-7688</issn><issn>1469-7696</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpjYuA0NDGz1DU3szRjgbMtLDgYuIqLswwMDE0NDCw5GURDMlIVXMN9HRU8UotL8vMUcvNTUnN4GFjTEnOKU3mhNDeDpptriLOHbkZiTnxBUWZuYlFlfH5iZryHo088SMzAxMTYEAjKDI1JUQsAR1MtLw</recordid><startdate>20221111</startdate><enddate>20221111</enddate><creator>Parent, Léo</creator><general>Taylor &amp; Francis (Routledge)</general><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0009-0004-0386-2260</orcidid><orcidid>https://orcid.org/0009-0004-0386-2260</orcidid></search><sort><creationdate>20221111</creationdate><title>The EWMA Heston model</title><author>Parent, Léo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-hal_primary_oai_HAL_hal_04431111v13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Quantitative Finance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parent, Léo</creatorcontrib><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Quantitative finance</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parent, Léo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The EWMA Heston model</atitle><jtitle>Quantitative finance</jtitle><date>2022-11-11</date><risdate>2022</risdate><volume>23</volume><issue>1</issue><spage>71</spage><epage>93</epage><pages>71-93</pages><issn>1469-7688</issn><eissn>1469-7696</eissn><abstract>This paper introduces the exponentially weighted moving average (EWMA) Heston model, a Markovian stochastic volatility model able to capture a wide range of empirical features related to volatility dynamics while being more tractable for simulations than rough volatility models based on fractional processes. After presenting the model and its principal characteristics, our analysis focuses on the use of its associated Euler-discretization scheme as a time-series generator for Monte-Carlo simulations. Using this discretization scheme, and on the basis of S&amp;P500 empirical time series, we show that the EWMA Heston model is overall consistent with market data, making it a credible alternative to other existing stochastic volatility models. Keywords: tohsti voltility modelD reston modelD qudrti rough reston modelD umh e'etD timeEreversl symmetryD voltility distriutionD returns distriutionF JEL classication: gISD gQPD qIHD qIRD qIUF</abstract><pub>Taylor &amp; Francis (Routledge)</pub><orcidid>https://orcid.org/0009-0004-0386-2260</orcidid><orcidid>https://orcid.org/0009-0004-0386-2260</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1469-7688
ispartof Quantitative finance, 2022-11, Vol.23 (1), p.71-93
issn 1469-7688
1469-7696
language eng
recordid cdi_hal_primary_oai_HAL_hal_04431111v1
source Business Source Complete; Taylor & Francis:Master (3349 titles)
subjects Quantitative Finance
title The EWMA Heston model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T16%3A33%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20EWMA%20Heston%20model&rft.jtitle=Quantitative%20finance&rft.au=Parent,%20L%C3%A9o&rft.date=2022-11-11&rft.volume=23&rft.issue=1&rft.spage=71&rft.epage=93&rft.pages=71-93&rft.issn=1469-7688&rft.eissn=1469-7696&rft_id=info:doi/&rft_dat=%3Chal%3Eoai_HAL_hal_04431111v1%3C/hal%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true