3D XFEM investigation of the plasticity effect on fatigue propagation under thermo-mechanical loading

The aim of this paper is to propose a computation strategy for fatigue propagation simulation of a crack by taking into account the plasticity. Feulvarch et al. (Comput Methods Appl Mech Eng 361: 112805, 2020) recently proposed a first XFEM formulation capable of overcoming the volumetric locking ph...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of fracture 2021-02
Hauptverfasser: Feulvarch, Eric, Lacroix, Rémi, Madou, Komlanvi, Deschanels, Hubert, Pignol, Moïse
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title International journal of fracture
container_volume
creator Feulvarch, Eric
Lacroix, Rémi
Madou, Komlanvi
Deschanels, Hubert
Pignol, Moïse
description The aim of this paper is to propose a computation strategy for fatigue propagation simulation of a crack by taking into account the plasticity. Feulvarch et al. (Comput Methods Appl Mech Eng 361: 112805, 2020) recently proposed a first XFEM formulation capable of overcoming the volumetric locking phenomenon due to plastic incompressibility in 3D. This formulation is here applied to quadratic elements for the mode I propagation of a crack in a valve structure submitted to cyclic thermo-mechanical loading. A simulation strategy is proposed where it is not necessary to compute all the cycles and thus the complete plastic history. This is of great interest because it avoids the treatment of the possible closing of the crack and uses the conventional J-integral. The application reveals the
doi_str_mv 10.1007/s10704-021-00516-z
format Article
fullrecord <record><control><sourceid>hal</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04416775v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_04416775v1</sourcerecordid><originalsourceid>FETCH-hal_primary_oai_HAL_hal_04416775v13</originalsourceid><addsrcrecordid>eNqVi7FOwzAURS0EEqHwA0xeGVyeYycmI4JWHejWoVv0lNqJkWNHtlupfD2p1B_odKVzziXklcOSA6j3xEGBZFByBlDxmv3dkYJXSrCyVuKeFCBUzRpZNo_kKaVfAGjUhyyIFt90v15tqfUnnbLtMdvgaTA0D5pODmfW2Xym2hjdZTo7Myf9cZYxTHjtj_6g4-USx8BG3Q3obYeOuoAH6_tn8mDQJf1y3QV5W692Xxs2oGunaEeM5zagbTefP-2FgZS8Vqo6cXFL-w-kK1Gk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>3D XFEM investigation of the plasticity effect on fatigue propagation under thermo-mechanical loading</title><source>SpringerLink Journals - AutoHoldings</source><creator>Feulvarch, Eric ; Lacroix, Rémi ; Madou, Komlanvi ; Deschanels, Hubert ; Pignol, Moïse</creator><creatorcontrib>Feulvarch, Eric ; Lacroix, Rémi ; Madou, Komlanvi ; Deschanels, Hubert ; Pignol, Moïse</creatorcontrib><description>The aim of this paper is to propose a computation strategy for fatigue propagation simulation of a crack by taking into account the plasticity. Feulvarch et al. (Comput Methods Appl Mech Eng 361: 112805, 2020) recently proposed a first XFEM formulation capable of overcoming the volumetric locking phenomenon due to plastic incompressibility in 3D. This formulation is here applied to quadratic elements for the mode I propagation of a crack in a valve structure submitted to cyclic thermo-mechanical loading. A simulation strategy is proposed where it is not necessary to compute all the cycles and thus the complete plastic history. This is of great interest because it avoids the treatment of the possible closing of the crack and uses the conventional J-integral. The application reveals the</description><identifier>ISSN: 0376-9429</identifier><identifier>EISSN: 1573-2673</identifier><identifier>DOI: 10.1007/s10704-021-00516-z</identifier><language>eng</language><publisher>Springer Verlag</publisher><subject>Engineering Sciences</subject><ispartof>International journal of fracture, 2021-02</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-2055-3764 ; 0000-0003-2055-3764</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04416775$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Feulvarch, Eric</creatorcontrib><creatorcontrib>Lacroix, Rémi</creatorcontrib><creatorcontrib>Madou, Komlanvi</creatorcontrib><creatorcontrib>Deschanels, Hubert</creatorcontrib><creatorcontrib>Pignol, Moïse</creatorcontrib><title>3D XFEM investigation of the plasticity effect on fatigue propagation under thermo-mechanical loading</title><title>International journal of fracture</title><description>The aim of this paper is to propose a computation strategy for fatigue propagation simulation of a crack by taking into account the plasticity. Feulvarch et al. (Comput Methods Appl Mech Eng 361: 112805, 2020) recently proposed a first XFEM formulation capable of overcoming the volumetric locking phenomenon due to plastic incompressibility in 3D. This formulation is here applied to quadratic elements for the mode I propagation of a crack in a valve structure submitted to cyclic thermo-mechanical loading. A simulation strategy is proposed where it is not necessary to compute all the cycles and thus the complete plastic history. This is of great interest because it avoids the treatment of the possible closing of the crack and uses the conventional J-integral. The application reveals the</description><subject>Engineering Sciences</subject><issn>0376-9429</issn><issn>1573-2673</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqVi7FOwzAURS0EEqHwA0xeGVyeYycmI4JWHejWoVv0lNqJkWNHtlupfD2p1B_odKVzziXklcOSA6j3xEGBZFByBlDxmv3dkYJXSrCyVuKeFCBUzRpZNo_kKaVfAGjUhyyIFt90v15tqfUnnbLtMdvgaTA0D5pODmfW2Xym2hjdZTo7Myf9cZYxTHjtj_6g4-USx8BG3Q3obYeOuoAH6_tn8mDQJf1y3QV5W692Xxs2oGunaEeM5zagbTefP-2FgZS8Vqo6cXFL-w-kK1Gk</recordid><startdate>20210204</startdate><enddate>20210204</enddate><creator>Feulvarch, Eric</creator><creator>Lacroix, Rémi</creator><creator>Madou, Komlanvi</creator><creator>Deschanels, Hubert</creator><creator>Pignol, Moïse</creator><general>Springer Verlag</general><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-2055-3764</orcidid><orcidid>https://orcid.org/0000-0003-2055-3764</orcidid></search><sort><creationdate>20210204</creationdate><title>3D XFEM investigation of the plasticity effect on fatigue propagation under thermo-mechanical loading</title><author>Feulvarch, Eric ; Lacroix, Rémi ; Madou, Komlanvi ; Deschanels, Hubert ; Pignol, Moïse</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-hal_primary_oai_HAL_hal_04416775v13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Engineering Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feulvarch, Eric</creatorcontrib><creatorcontrib>Lacroix, Rémi</creatorcontrib><creatorcontrib>Madou, Komlanvi</creatorcontrib><creatorcontrib>Deschanels, Hubert</creatorcontrib><creatorcontrib>Pignol, Moïse</creatorcontrib><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>International journal of fracture</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feulvarch, Eric</au><au>Lacroix, Rémi</au><au>Madou, Komlanvi</au><au>Deschanels, Hubert</au><au>Pignol, Moïse</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D XFEM investigation of the plasticity effect on fatigue propagation under thermo-mechanical loading</atitle><jtitle>International journal of fracture</jtitle><date>2021-02-04</date><risdate>2021</risdate><issn>0376-9429</issn><eissn>1573-2673</eissn><abstract>The aim of this paper is to propose a computation strategy for fatigue propagation simulation of a crack by taking into account the plasticity. Feulvarch et al. (Comput Methods Appl Mech Eng 361: 112805, 2020) recently proposed a first XFEM formulation capable of overcoming the volumetric locking phenomenon due to plastic incompressibility in 3D. This formulation is here applied to quadratic elements for the mode I propagation of a crack in a valve structure submitted to cyclic thermo-mechanical loading. A simulation strategy is proposed where it is not necessary to compute all the cycles and thus the complete plastic history. This is of great interest because it avoids the treatment of the possible closing of the crack and uses the conventional J-integral. The application reveals the</abstract><pub>Springer Verlag</pub><doi>10.1007/s10704-021-00516-z</doi><orcidid>https://orcid.org/0000-0003-2055-3764</orcidid><orcidid>https://orcid.org/0000-0003-2055-3764</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0376-9429
ispartof International journal of fracture, 2021-02
issn 0376-9429
1573-2673
language eng
recordid cdi_hal_primary_oai_HAL_hal_04416775v1
source SpringerLink Journals - AutoHoldings
subjects Engineering Sciences
title 3D XFEM investigation of the plasticity effect on fatigue propagation under thermo-mechanical loading
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T13%3A43%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20XFEM%20investigation%20of%20the%20plasticity%20effect%20on%20fatigue%20propagation%20under%20thermo-mechanical%20loading&rft.jtitle=International%20journal%20of%20fracture&rft.au=Feulvarch,%20Eric&rft.date=2021-02-04&rft.issn=0376-9429&rft.eissn=1573-2673&rft_id=info:doi/10.1007/s10704-021-00516-z&rft_dat=%3Chal%3Eoai_HAL_hal_04416775v1%3C/hal%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true