Discrete cosine transform LSQR methods for multidimensional ill-posed problems
We propose new tensor Krylov subspace methods for ill-posed linear tensor problems such ascolor or video image restoration. Those methods are based on the tensor-tensor discrete cosine transformthat gives fast tensor-tensor product computations. In particular, we will focus on the tensor discretecos...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical modeling 2022-12, Vol.10 (1), p.21-37 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We propose new tensor Krylov subspace methods for ill-posed linear tensor problems such ascolor or video image restoration. Those methods are based on the tensor-tensor discrete cosine transformthat gives fast tensor-tensor product computations. In particular, we will focus on the tensor discretecosine versions of GMRES, Golub-Kahan bidiagonalisation and LSQR methods. The presented numer-ical tests show that the methods are very fast and give good accuracies when solving some linear tensorill-posed problems. |
---|---|
ISSN: | 2345-394X |
DOI: | 10.22124/jmm.2021.19303.1659 |