Distinct mechanisms mediate pacemaker dysfunction associated with catecholaminergic polymorphic ventricular tachycardia mutations: Insights from computational modeling
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a stress-induced ventricular arrhythmia associated with rhythm disturbance and impaired sinoatrial node cell (SANC) automaticity (pauses). Mutations associated with dysfunction of Ca2+-related mechanisms have been shown to be present in...
Gespeichert in:
Veröffentlicht in: | Journal of molecular and cellular cardiology 2020-06, Vol.143, p.85-95 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 95 |
---|---|
container_issue | |
container_start_page | 85 |
container_title | Journal of molecular and cellular cardiology |
container_volume | 143 |
creator | Arbel-Ganon, Limor Behar, Joachim A. Gómez, Ana María Yaniv, Yael |
description | Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a stress-induced ventricular arrhythmia associated with rhythm disturbance and impaired sinoatrial node cell (SANC) automaticity (pauses). Mutations associated with dysfunction of Ca2+-related mechanisms have been shown to be present in CPVT. These dysfunctions include impaired Ca2+ release from the ryanodine receptor (i.e., RyR2R4496C mutation) or binding to calsequestrin 2 (CASQ2). In SANC, Ca2+ signaling directly and indirectly mediates pacemaker function.
We address here the following research questions: (i) what coupled-clock mechanisms and pathways mediate pacemaker mutations associated with CPVT in basal and in response to β-adrenergic stimulation? (ii) Can different mechanisms lead to the same CPVT-related pacemaker pauses? (iii) Can the mutation-induced deteriorations in SANC function be reversed by drug intervention or gene manipulation?
We used a numerical model of mice SANC that includes membrane and intracellular mechanisms and their interconnected signaling pathways. In the basal state of RyR2R4496C SANC, the model predicted that the Na+-Ca2+ exchanger current (INCX) and T-type Ca2+ current (ICaT) mediate between changes in Ca2+ signaling and SANC dysfunction. Under β-adrenergic stimulation, changes in cAMP-PKA signaling and the sodium currents (INa), in addition to INCX and ICaT, mediate between changes in Ca2+ signaling and SANC automaticity pauses. Under basal conditions in Casq2−/−, the same mechanisms drove changes in Ca2+ signaling and subsequent pacemaker dysfunction. However, SANC automaticity pauses in response to β–AR stimulation were mediated by ICaT and INa. Taken together, distinct mechanisms can lead to CPVT-associated SANC automaticity pauses. In addition, we predict that specifically increasing SANC cAMP-PKA activity by either a pharmacological agent (IBMX, a phosphodiesterase (PDE) inhibitor), gene manipulation (overexpression of adenylyl cyclase 1/8) or direct manipulation of the SERCA phosphorylation target through changes in gene expression, compensate for the impairment in SANC automaticity. These findings suggest new insights for understanding CPVT and its therapeutic approach.
[Display omitted]
•A numerical model can predict CPVT-induced pacemaker dysfunction mechanisms.•Impairment of distinct mechanisms lead to CPVT-related pacemaker dysfunction.•Ca2+ can mediate CPVT-related pacemaker dysfunction through different pathways.•Changes in cAMP/PKA signaling c |
doi_str_mv | 10.1016/j.yjmcc.2020.04.017 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04409482v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022282820301000</els_id><sourcerecordid>2395615401</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-c81a5f0587a47439bceee4b32936be717580ed8d776c5c449f5bf7bda07bc4ea3</originalsourceid><addsrcrecordid>eNp9kc-O0zAQhy0EYsvCEyAhH-GQ4thOkyBxWC1_dqVKXOBsOZNJ4xLHwXa6yhPxmji07JGTR55vfiPNR8jrnG1zlu_eH7fL0QJsOeNsy-SW5eUTsslZXWRVUcmnZMMY5xmveHVFXoRwZIzVUojn5EpwIepiJzfk9ycTohkhUovQ69EEG1LZGh2RThrQ6p_oabuEbk6UcSPVIThY-y19MLGnkEro3aCtGdEfDNDJDYt1fupTfcIxegPzoD2NGvoFtE_p1M5Rr3HhA70fgzn0MdDOO0vB2enS0wO1rsXBjIeX5Fmnh4CvLu81-fHl8_fbu2z_7ev97c0-AymqmEGV66JjRVVqWUpRN4CIshG8FrsGy7wsKoZt1ZblDgqQsu6KpiubVrOyAYlaXJN359xeD2ryxmq_KKeNurvZq_WPSZmuWPFTnti3Z3by7teMISprAuAw6BHdHBRfb5wXkq2oOKPgXQgeu8fsnKnVpjqqvzbVajMtUclmmnpzWTA3ycnjzD99Cfh4BjCd5GTQqwAGR0j-PEJUrTP_XfAHVYu3oQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2395615401</pqid></control><display><type>article</type><title>Distinct mechanisms mediate pacemaker dysfunction associated with catecholaminergic polymorphic ventricular tachycardia mutations: Insights from computational modeling</title><source>Access via ScienceDirect (Elsevier)</source><creator>Arbel-Ganon, Limor ; Behar, Joachim A. ; Gómez, Ana María ; Yaniv, Yael</creator><creatorcontrib>Arbel-Ganon, Limor ; Behar, Joachim A. ; Gómez, Ana María ; Yaniv, Yael</creatorcontrib><description>Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a stress-induced ventricular arrhythmia associated with rhythm disturbance and impaired sinoatrial node cell (SANC) automaticity (pauses). Mutations associated with dysfunction of Ca2+-related mechanisms have been shown to be present in CPVT. These dysfunctions include impaired Ca2+ release from the ryanodine receptor (i.e., RyR2R4496C mutation) or binding to calsequestrin 2 (CASQ2). In SANC, Ca2+ signaling directly and indirectly mediates pacemaker function.
We address here the following research questions: (i) what coupled-clock mechanisms and pathways mediate pacemaker mutations associated with CPVT in basal and in response to β-adrenergic stimulation? (ii) Can different mechanisms lead to the same CPVT-related pacemaker pauses? (iii) Can the mutation-induced deteriorations in SANC function be reversed by drug intervention or gene manipulation?
We used a numerical model of mice SANC that includes membrane and intracellular mechanisms and their interconnected signaling pathways. In the basal state of RyR2R4496C SANC, the model predicted that the Na+-Ca2+ exchanger current (INCX) and T-type Ca2+ current (ICaT) mediate between changes in Ca2+ signaling and SANC dysfunction. Under β-adrenergic stimulation, changes in cAMP-PKA signaling and the sodium currents (INa), in addition to INCX and ICaT, mediate between changes in Ca2+ signaling and SANC automaticity pauses. Under basal conditions in Casq2−/−, the same mechanisms drove changes in Ca2+ signaling and subsequent pacemaker dysfunction. However, SANC automaticity pauses in response to β–AR stimulation were mediated by ICaT and INa. Taken together, distinct mechanisms can lead to CPVT-associated SANC automaticity pauses. In addition, we predict that specifically increasing SANC cAMP-PKA activity by either a pharmacological agent (IBMX, a phosphodiesterase (PDE) inhibitor), gene manipulation (overexpression of adenylyl cyclase 1/8) or direct manipulation of the SERCA phosphorylation target through changes in gene expression, compensate for the impairment in SANC automaticity. These findings suggest new insights for understanding CPVT and its therapeutic approach.
[Display omitted]
•A numerical model can predict CPVT-induced pacemaker dysfunction mechanisms.•Impairment of distinct mechanisms lead to CPVT-related pacemaker dysfunction.•Ca2+ can mediate CPVT-related pacemaker dysfunction through different pathways.•Changes in cAMP/PKA signaling can lead to pacemaker automaticity pauses.•Phosphorylation target manipulation can reverse the impaired pacemaker automaticity.</description><identifier>ISSN: 0022-2828</identifier><identifier>EISSN: 1095-8584</identifier><identifier>DOI: 10.1016/j.yjmcc.2020.04.017</identifier><identifier>PMID: 32339564</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Cardiac diseases ; Coupled-clock ; Life Sciences ; Mutations ; Numerical model ; Pacemaker cell ; Sinoatrial node</subject><ispartof>Journal of molecular and cellular cardiology, 2020-06, Vol.143, p.85-95</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright © 2020 Elsevier Ltd. All rights reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-c81a5f0587a47439bceee4b32936be717580ed8d776c5c449f5bf7bda07bc4ea3</citedby><cites>FETCH-LOGICAL-c438t-c81a5f0587a47439bceee4b32936be717580ed8d776c5c449f5bf7bda07bc4ea3</cites><orcidid>0000-0003-0009-2884</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.yjmcc.2020.04.017$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,315,781,785,886,3551,27926,27927,45997</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32339564$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04409482$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Arbel-Ganon, Limor</creatorcontrib><creatorcontrib>Behar, Joachim A.</creatorcontrib><creatorcontrib>Gómez, Ana María</creatorcontrib><creatorcontrib>Yaniv, Yael</creatorcontrib><title>Distinct mechanisms mediate pacemaker dysfunction associated with catecholaminergic polymorphic ventricular tachycardia mutations: Insights from computational modeling</title><title>Journal of molecular and cellular cardiology</title><addtitle>J Mol Cell Cardiol</addtitle><description>Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a stress-induced ventricular arrhythmia associated with rhythm disturbance and impaired sinoatrial node cell (SANC) automaticity (pauses). Mutations associated with dysfunction of Ca2+-related mechanisms have been shown to be present in CPVT. These dysfunctions include impaired Ca2+ release from the ryanodine receptor (i.e., RyR2R4496C mutation) or binding to calsequestrin 2 (CASQ2). In SANC, Ca2+ signaling directly and indirectly mediates pacemaker function.
We address here the following research questions: (i) what coupled-clock mechanisms and pathways mediate pacemaker mutations associated with CPVT in basal and in response to β-adrenergic stimulation? (ii) Can different mechanisms lead to the same CPVT-related pacemaker pauses? (iii) Can the mutation-induced deteriorations in SANC function be reversed by drug intervention or gene manipulation?
We used a numerical model of mice SANC that includes membrane and intracellular mechanisms and their interconnected signaling pathways. In the basal state of RyR2R4496C SANC, the model predicted that the Na+-Ca2+ exchanger current (INCX) and T-type Ca2+ current (ICaT) mediate between changes in Ca2+ signaling and SANC dysfunction. Under β-adrenergic stimulation, changes in cAMP-PKA signaling and the sodium currents (INa), in addition to INCX and ICaT, mediate between changes in Ca2+ signaling and SANC automaticity pauses. Under basal conditions in Casq2−/−, the same mechanisms drove changes in Ca2+ signaling and subsequent pacemaker dysfunction. However, SANC automaticity pauses in response to β–AR stimulation were mediated by ICaT and INa. Taken together, distinct mechanisms can lead to CPVT-associated SANC automaticity pauses. In addition, we predict that specifically increasing SANC cAMP-PKA activity by either a pharmacological agent (IBMX, a phosphodiesterase (PDE) inhibitor), gene manipulation (overexpression of adenylyl cyclase 1/8) or direct manipulation of the SERCA phosphorylation target through changes in gene expression, compensate for the impairment in SANC automaticity. These findings suggest new insights for understanding CPVT and its therapeutic approach.
[Display omitted]
•A numerical model can predict CPVT-induced pacemaker dysfunction mechanisms.•Impairment of distinct mechanisms lead to CPVT-related pacemaker dysfunction.•Ca2+ can mediate CPVT-related pacemaker dysfunction through different pathways.•Changes in cAMP/PKA signaling can lead to pacemaker automaticity pauses.•Phosphorylation target manipulation can reverse the impaired pacemaker automaticity.</description><subject>Cardiac diseases</subject><subject>Coupled-clock</subject><subject>Life Sciences</subject><subject>Mutations</subject><subject>Numerical model</subject><subject>Pacemaker cell</subject><subject>Sinoatrial node</subject><issn>0022-2828</issn><issn>1095-8584</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kc-O0zAQhy0EYsvCEyAhH-GQ4thOkyBxWC1_dqVKXOBsOZNJ4xLHwXa6yhPxmji07JGTR55vfiPNR8jrnG1zlu_eH7fL0QJsOeNsy-SW5eUTsslZXWRVUcmnZMMY5xmveHVFXoRwZIzVUojn5EpwIepiJzfk9ycTohkhUovQ69EEG1LZGh2RThrQ6p_oabuEbk6UcSPVIThY-y19MLGnkEro3aCtGdEfDNDJDYt1fupTfcIxegPzoD2NGvoFtE_p1M5Rr3HhA70fgzn0MdDOO0vB2enS0wO1rsXBjIeX5Fmnh4CvLu81-fHl8_fbu2z_7ev97c0-AymqmEGV66JjRVVqWUpRN4CIshG8FrsGy7wsKoZt1ZblDgqQsu6KpiubVrOyAYlaXJN359xeD2ryxmq_KKeNurvZq_WPSZmuWPFTnti3Z3by7teMISprAuAw6BHdHBRfb5wXkq2oOKPgXQgeu8fsnKnVpjqqvzbVajMtUclmmnpzWTA3ycnjzD99Cfh4BjCd5GTQqwAGR0j-PEJUrTP_XfAHVYu3oQ</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Arbel-Ganon, Limor</creator><creator>Behar, Joachim A.</creator><creator>Gómez, Ana María</creator><creator>Yaniv, Yael</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-0009-2884</orcidid></search><sort><creationdate>20200601</creationdate><title>Distinct mechanisms mediate pacemaker dysfunction associated with catecholaminergic polymorphic ventricular tachycardia mutations: Insights from computational modeling</title><author>Arbel-Ganon, Limor ; Behar, Joachim A. ; Gómez, Ana María ; Yaniv, Yael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-c81a5f0587a47439bceee4b32936be717580ed8d776c5c449f5bf7bda07bc4ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cardiac diseases</topic><topic>Coupled-clock</topic><topic>Life Sciences</topic><topic>Mutations</topic><topic>Numerical model</topic><topic>Pacemaker cell</topic><topic>Sinoatrial node</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arbel-Ganon, Limor</creatorcontrib><creatorcontrib>Behar, Joachim A.</creatorcontrib><creatorcontrib>Gómez, Ana María</creatorcontrib><creatorcontrib>Yaniv, Yael</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of molecular and cellular cardiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arbel-Ganon, Limor</au><au>Behar, Joachim A.</au><au>Gómez, Ana María</au><au>Yaniv, Yael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distinct mechanisms mediate pacemaker dysfunction associated with catecholaminergic polymorphic ventricular tachycardia mutations: Insights from computational modeling</atitle><jtitle>Journal of molecular and cellular cardiology</jtitle><addtitle>J Mol Cell Cardiol</addtitle><date>2020-06-01</date><risdate>2020</risdate><volume>143</volume><spage>85</spage><epage>95</epage><pages>85-95</pages><issn>0022-2828</issn><eissn>1095-8584</eissn><abstract>Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a stress-induced ventricular arrhythmia associated with rhythm disturbance and impaired sinoatrial node cell (SANC) automaticity (pauses). Mutations associated with dysfunction of Ca2+-related mechanisms have been shown to be present in CPVT. These dysfunctions include impaired Ca2+ release from the ryanodine receptor (i.e., RyR2R4496C mutation) or binding to calsequestrin 2 (CASQ2). In SANC, Ca2+ signaling directly and indirectly mediates pacemaker function.
We address here the following research questions: (i) what coupled-clock mechanisms and pathways mediate pacemaker mutations associated with CPVT in basal and in response to β-adrenergic stimulation? (ii) Can different mechanisms lead to the same CPVT-related pacemaker pauses? (iii) Can the mutation-induced deteriorations in SANC function be reversed by drug intervention or gene manipulation?
We used a numerical model of mice SANC that includes membrane and intracellular mechanisms and their interconnected signaling pathways. In the basal state of RyR2R4496C SANC, the model predicted that the Na+-Ca2+ exchanger current (INCX) and T-type Ca2+ current (ICaT) mediate between changes in Ca2+ signaling and SANC dysfunction. Under β-adrenergic stimulation, changes in cAMP-PKA signaling and the sodium currents (INa), in addition to INCX and ICaT, mediate between changes in Ca2+ signaling and SANC automaticity pauses. Under basal conditions in Casq2−/−, the same mechanisms drove changes in Ca2+ signaling and subsequent pacemaker dysfunction. However, SANC automaticity pauses in response to β–AR stimulation were mediated by ICaT and INa. Taken together, distinct mechanisms can lead to CPVT-associated SANC automaticity pauses. In addition, we predict that specifically increasing SANC cAMP-PKA activity by either a pharmacological agent (IBMX, a phosphodiesterase (PDE) inhibitor), gene manipulation (overexpression of adenylyl cyclase 1/8) or direct manipulation of the SERCA phosphorylation target through changes in gene expression, compensate for the impairment in SANC automaticity. These findings suggest new insights for understanding CPVT and its therapeutic approach.
[Display omitted]
•A numerical model can predict CPVT-induced pacemaker dysfunction mechanisms.•Impairment of distinct mechanisms lead to CPVT-related pacemaker dysfunction.•Ca2+ can mediate CPVT-related pacemaker dysfunction through different pathways.•Changes in cAMP/PKA signaling can lead to pacemaker automaticity pauses.•Phosphorylation target manipulation can reverse the impaired pacemaker automaticity.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>32339564</pmid><doi>10.1016/j.yjmcc.2020.04.017</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0009-2884</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2828 |
ispartof | Journal of molecular and cellular cardiology, 2020-06, Vol.143, p.85-95 |
issn | 0022-2828 1095-8584 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04409482v1 |
source | Access via ScienceDirect (Elsevier) |
subjects | Cardiac diseases Coupled-clock Life Sciences Mutations Numerical model Pacemaker cell Sinoatrial node |
title | Distinct mechanisms mediate pacemaker dysfunction associated with catecholaminergic polymorphic ventricular tachycardia mutations: Insights from computational modeling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T07%3A18%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distinct%20mechanisms%20mediate%20pacemaker%20dysfunction%20associated%20with%20catecholaminergic%20polymorphic%20ventricular%20tachycardia%20mutations:%20Insights%20from%20computational%20modeling&rft.jtitle=Journal%20of%20molecular%20and%20cellular%20cardiology&rft.au=Arbel-Ganon,%20Limor&rft.date=2020-06-01&rft.volume=143&rft.spage=85&rft.epage=95&rft.pages=85-95&rft.issn=0022-2828&rft.eissn=1095-8584&rft_id=info:doi/10.1016/j.yjmcc.2020.04.017&rft_dat=%3Cproquest_hal_p%3E2395615401%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2395615401&rft_id=info:pmid/32339564&rft_els_id=S0022282820301000&rfr_iscdi=true |