Interfacial properties of all-epitaxial Fe–Ge/Ge heterostructures on Ge(111)

The molecular-beam-epitaxy growth of Fe–Ge/Ge/Fe–Ge trilayers on Ge(111) wafers has been investigated as a function of three parameters: the Ge spacer coverage, the substrate temperature (TD) and the dynamic atomic hydrogen (H) exposure during the Ge spacer deposition. Morphology and crystal structu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Thin solid films 2013-10, Vol.545, p.257-266
Hauptverfasser: Maafa, I., Jaafar, R., Hajjar-Garreau, S., Berling, D., Mehdaoui, A., Pirri, C., Deny, E., Florentin, A., Uhlaq-Bouillet, C., Garreau, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 266
container_issue
container_start_page 257
container_title Thin solid films
container_volume 545
creator Maafa, I.
Jaafar, R.
Hajjar-Garreau, S.
Berling, D.
Mehdaoui, A.
Pirri, C.
Deny, E.
Florentin, A.
Uhlaq-Bouillet, C.
Garreau, G.
description The molecular-beam-epitaxy growth of Fe–Ge/Ge/Fe–Ge trilayers on Ge(111) wafers has been investigated as a function of three parameters: the Ge spacer coverage, the substrate temperature (TD) and the dynamic atomic hydrogen (H) exposure during the Ge spacer deposition. Morphology and crystal structure have been characterized in situ by means of scanning tunneling microscopy, low energy electron diffraction, X-ray photoelectron diffraction and ex situ with high-resolution transmission microscopy. Whatever the H flux, epitaxial growth of Ge spacer requires deposition temperature above ~220°C. At the earliest stages of Ge deposition, the surface periodicity of the bottom Fe1.9Ge epilayer changes from p(2×2) to 3×3R30° for deposition temperature above ~220°C, whatever the H dosing. It results from severe intermixing that modifies the stoichiometry of the whole Fe–Ge layer. However, this layer preserves its hexagonal B82 crystal structure and no additional Fe–Ge compounds formed at the interface. We found also that the H flux drastically modifies the Ge spacer growth mode for deposition temperature above ~220°C. In particular, the Ge morphology evolves from 3D islands without H supply to flat and continuous film for H partial pressure above 10–3Pa. Finally, the top Fe–Ge electrode crystallizes in the same structure as the bottom electrode, and the planar relations of the trilayer are: (111)Ge-wafer||(0001)bottom–Fe1.9Ge||(111)Ge-spacer||(0001)top–Fe1.9Ge and [−110]Ge-wafer||[11–20]bottom–Fe1.9Ge||[1–21]Ge-spacer||[11–20]top–Fe1.9Ge. These fully epitaxial Fe–Ge/germanium hybrid heterostructures with single crystal Ge layer of diamond structure appear therefore as promising candidates for semiconductor spintronics. •Epitaxy of single crystal iron–germanium/germanium/iron–germanium trilayers•Intermixing occurs at the bottom iron–germanium/germanium spacer interface.•The bottom iron–germanium layer preserves however its crystal structure.•The spacer adopts the diamond structure for high deposition temperature.•The dynamic hydrogen supply strongly improves the spacer growth mode.
doi_str_mv 10.1016/j.tsf.2013.08.055
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04404410v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0040609013013540</els_id><sourcerecordid>1660062879</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-85bda506245871dde50b1e8c6607dc10b5ef7059cd8bccce56f584878ffa2ac53</originalsourceid><addsrcrecordid>eNp9kM9KJDEQh8OisKPuA-ytLwt66Laqu9OdYU8izigMetFzyFRXMEPbPZtkZL35Dr6hT2KaEY9CIJB8v_rzCfEboUDA5nxTxGCLErAqQBUg5Q8xQ9XO87Kt8EDMAGrIG5jDT3EUwgYAsCyrmbi9GSJ7a8iZPtv6ccs-Og7ZaDPT9zlvXTT_p78Fv7--Lfl8ydkjp8gYot9R3PkJHrIlnyLi2Yk4tKYP_OvzPhYPi6v7y-t8dbe8ubxY5VTN65grue6MhKaspWqx61jCGllR00DbEcJasm1BzqlTayJi2VipatUqa01pSFbH4mxf99H0euvdk_EvejROX1-s9PQGdZ0OwjMm9nTPpvX-7ThE_eQCcd-bgcdd0Ji6plGSrITiHqW0X_Bsv2oj6Mmz3ujkWU-eNSidPKfMn8_yJpDprTcDufAVLFtVVlVdJ-7vnuPk5dmx14EcD8Sd80xRd6P7pssHW72SAA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660062879</pqid></control><display><type>article</type><title>Interfacial properties of all-epitaxial Fe–Ge/Ge heterostructures on Ge(111)</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Maafa, I. ; Jaafar, R. ; Hajjar-Garreau, S. ; Berling, D. ; Mehdaoui, A. ; Pirri, C. ; Deny, E. ; Florentin, A. ; Uhlaq-Bouillet, C. ; Garreau, G.</creator><creatorcontrib>Maafa, I. ; Jaafar, R. ; Hajjar-Garreau, S. ; Berling, D. ; Mehdaoui, A. ; Pirri, C. ; Deny, E. ; Florentin, A. ; Uhlaq-Bouillet, C. ; Garreau, G.</creatorcontrib><description>The molecular-beam-epitaxy growth of Fe–Ge/Ge/Fe–Ge trilayers on Ge(111) wafers has been investigated as a function of three parameters: the Ge spacer coverage, the substrate temperature (TD) and the dynamic atomic hydrogen (H) exposure during the Ge spacer deposition. Morphology and crystal structure have been characterized in situ by means of scanning tunneling microscopy, low energy electron diffraction, X-ray photoelectron diffraction and ex situ with high-resolution transmission microscopy. Whatever the H flux, epitaxial growth of Ge spacer requires deposition temperature above ~220°C. At the earliest stages of Ge deposition, the surface periodicity of the bottom Fe1.9Ge epilayer changes from p(2×2) to 3×3R30° for deposition temperature above ~220°C, whatever the H dosing. It results from severe intermixing that modifies the stoichiometry of the whole Fe–Ge layer. However, this layer preserves its hexagonal B82 crystal structure and no additional Fe–Ge compounds formed at the interface. We found also that the H flux drastically modifies the Ge spacer growth mode for deposition temperature above ~220°C. In particular, the Ge morphology evolves from 3D islands without H supply to flat and continuous film for H partial pressure above 10–3Pa. Finally, the top Fe–Ge electrode crystallizes in the same structure as the bottom electrode, and the planar relations of the trilayer are: (111)Ge-wafer||(0001)bottom–Fe1.9Ge||(111)Ge-spacer||(0001)top–Fe1.9Ge and [−110]Ge-wafer||[11–20]bottom–Fe1.9Ge||[1–21]Ge-spacer||[11–20]top–Fe1.9Ge. These fully epitaxial Fe–Ge/germanium hybrid heterostructures with single crystal Ge layer of diamond structure appear therefore as promising candidates for semiconductor spintronics. •Epitaxy of single crystal iron–germanium/germanium/iron–germanium trilayers•Intermixing occurs at the bottom iron–germanium/germanium spacer interface.•The bottom iron–germanium layer preserves however its crystal structure.•The spacer adopts the diamond structure for high deposition temperature.•The dynamic hydrogen supply strongly improves the spacer growth mode.</description><identifier>ISSN: 0040-6090</identifier><identifier>EISSN: 1879-2731</identifier><identifier>DOI: 10.1016/j.tsf.2013.08.055</identifier><identifier>CODEN: THSFAP</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Chemical Sciences ; Cross-disciplinary physics: materials science; rheology ; Deposition ; Electrodes ; Electronics ; Exact sciences and technology ; Flux ; Germanium ; Growth from melts; zone melting and refining ; Interfaces ; Intermetallic ; Iron ; Magnetoelectric, magnetostrictive, magnetoacoustic, magnetooptic and magnetothermal devices. Spintronics ; Materials science ; Methods of crystal growth; physics of crystal growth ; Methods of deposition of films and coatings; film growth and epitaxy ; Molecular, atomic, ion, and chemical beam epitaxy ; Molecular-beam-epitaxy ; Morphology ; Multilayer ; Other ; Physics ; Scanning tunneling microscopy ; Semiconductor ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Semiconductors ; Spacers ; Surfactant ; Theory and models of film growth ; X-rays photoelectron diffraction</subject><ispartof>Thin solid films, 2013-10, Vol.545, p.257-266</ispartof><rights>2013 Elsevier B.V.</rights><rights>2014 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-85bda506245871dde50b1e8c6607dc10b5ef7059cd8bccce56f584878ffa2ac53</citedby><cites>FETCH-LOGICAL-c394t-85bda506245871dde50b1e8c6607dc10b5ef7059cd8bccce56f584878ffa2ac53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.tsf.2013.08.055$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27823344$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04404410$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Maafa, I.</creatorcontrib><creatorcontrib>Jaafar, R.</creatorcontrib><creatorcontrib>Hajjar-Garreau, S.</creatorcontrib><creatorcontrib>Berling, D.</creatorcontrib><creatorcontrib>Mehdaoui, A.</creatorcontrib><creatorcontrib>Pirri, C.</creatorcontrib><creatorcontrib>Deny, E.</creatorcontrib><creatorcontrib>Florentin, A.</creatorcontrib><creatorcontrib>Uhlaq-Bouillet, C.</creatorcontrib><creatorcontrib>Garreau, G.</creatorcontrib><title>Interfacial properties of all-epitaxial Fe–Ge/Ge heterostructures on Ge(111)</title><title>Thin solid films</title><description>The molecular-beam-epitaxy growth of Fe–Ge/Ge/Fe–Ge trilayers on Ge(111) wafers has been investigated as a function of three parameters: the Ge spacer coverage, the substrate temperature (TD) and the dynamic atomic hydrogen (H) exposure during the Ge spacer deposition. Morphology and crystal structure have been characterized in situ by means of scanning tunneling microscopy, low energy electron diffraction, X-ray photoelectron diffraction and ex situ with high-resolution transmission microscopy. Whatever the H flux, epitaxial growth of Ge spacer requires deposition temperature above ~220°C. At the earliest stages of Ge deposition, the surface periodicity of the bottom Fe1.9Ge epilayer changes from p(2×2) to 3×3R30° for deposition temperature above ~220°C, whatever the H dosing. It results from severe intermixing that modifies the stoichiometry of the whole Fe–Ge layer. However, this layer preserves its hexagonal B82 crystal structure and no additional Fe–Ge compounds formed at the interface. We found also that the H flux drastically modifies the Ge spacer growth mode for deposition temperature above ~220°C. In particular, the Ge morphology evolves from 3D islands without H supply to flat and continuous film for H partial pressure above 10–3Pa. Finally, the top Fe–Ge electrode crystallizes in the same structure as the bottom electrode, and the planar relations of the trilayer are: (111)Ge-wafer||(0001)bottom–Fe1.9Ge||(111)Ge-spacer||(0001)top–Fe1.9Ge and [−110]Ge-wafer||[11–20]bottom–Fe1.9Ge||[1–21]Ge-spacer||[11–20]top–Fe1.9Ge. These fully epitaxial Fe–Ge/germanium hybrid heterostructures with single crystal Ge layer of diamond structure appear therefore as promising candidates for semiconductor spintronics. •Epitaxy of single crystal iron–germanium/germanium/iron–germanium trilayers•Intermixing occurs at the bottom iron–germanium/germanium spacer interface.•The bottom iron–germanium layer preserves however its crystal structure.•The spacer adopts the diamond structure for high deposition temperature.•The dynamic hydrogen supply strongly improves the spacer growth mode.</description><subject>Applied sciences</subject><subject>Chemical Sciences</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Deposition</subject><subject>Electrodes</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Flux</subject><subject>Germanium</subject><subject>Growth from melts; zone melting and refining</subject><subject>Interfaces</subject><subject>Intermetallic</subject><subject>Iron</subject><subject>Magnetoelectric, magnetostrictive, magnetoacoustic, magnetooptic and magnetothermal devices. Spintronics</subject><subject>Materials science</subject><subject>Methods of crystal growth; physics of crystal growth</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Molecular, atomic, ion, and chemical beam epitaxy</subject><subject>Molecular-beam-epitaxy</subject><subject>Morphology</subject><subject>Multilayer</subject><subject>Other</subject><subject>Physics</subject><subject>Scanning tunneling microscopy</subject><subject>Semiconductor</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Semiconductors</subject><subject>Spacers</subject><subject>Surfactant</subject><subject>Theory and models of film growth</subject><subject>X-rays photoelectron diffraction</subject><issn>0040-6090</issn><issn>1879-2731</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kM9KJDEQh8OisKPuA-ytLwt66Laqu9OdYU8izigMetFzyFRXMEPbPZtkZL35Dr6hT2KaEY9CIJB8v_rzCfEboUDA5nxTxGCLErAqQBUg5Q8xQ9XO87Kt8EDMAGrIG5jDT3EUwgYAsCyrmbi9GSJ7a8iZPtv6ccs-Og7ZaDPT9zlvXTT_p78Fv7--Lfl8ydkjp8gYot9R3PkJHrIlnyLi2Yk4tKYP_OvzPhYPi6v7y-t8dbe8ubxY5VTN65grue6MhKaspWqx61jCGllR00DbEcJasm1BzqlTayJi2VipatUqa01pSFbH4mxf99H0euvdk_EvejROX1-s9PQGdZ0OwjMm9nTPpvX-7ThE_eQCcd-bgcdd0Ji6plGSrITiHqW0X_Bsv2oj6Mmz3ujkWU-eNSidPKfMn8_yJpDprTcDufAVLFtVVlVdJ-7vnuPk5dmx14EcD8Sd80xRd6P7pssHW72SAA</recordid><startdate>20131031</startdate><enddate>20131031</enddate><creator>Maafa, I.</creator><creator>Jaafar, R.</creator><creator>Hajjar-Garreau, S.</creator><creator>Berling, D.</creator><creator>Mehdaoui, A.</creator><creator>Pirri, C.</creator><creator>Deny, E.</creator><creator>Florentin, A.</creator><creator>Uhlaq-Bouillet, C.</creator><creator>Garreau, G.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>1XC</scope></search><sort><creationdate>20131031</creationdate><title>Interfacial properties of all-epitaxial Fe–Ge/Ge heterostructures on Ge(111)</title><author>Maafa, I. ; Jaafar, R. ; Hajjar-Garreau, S. ; Berling, D. ; Mehdaoui, A. ; Pirri, C. ; Deny, E. ; Florentin, A. ; Uhlaq-Bouillet, C. ; Garreau, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-85bda506245871dde50b1e8c6607dc10b5ef7059cd8bccce56f584878ffa2ac53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Chemical Sciences</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Deposition</topic><topic>Electrodes</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Flux</topic><topic>Germanium</topic><topic>Growth from melts; zone melting and refining</topic><topic>Interfaces</topic><topic>Intermetallic</topic><topic>Iron</topic><topic>Magnetoelectric, magnetostrictive, magnetoacoustic, magnetooptic and magnetothermal devices. Spintronics</topic><topic>Materials science</topic><topic>Methods of crystal growth; physics of crystal growth</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Molecular, atomic, ion, and chemical beam epitaxy</topic><topic>Molecular-beam-epitaxy</topic><topic>Morphology</topic><topic>Multilayer</topic><topic>Other</topic><topic>Physics</topic><topic>Scanning tunneling microscopy</topic><topic>Semiconductor</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Semiconductors</topic><topic>Spacers</topic><topic>Surfactant</topic><topic>Theory and models of film growth</topic><topic>X-rays photoelectron diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maafa, I.</creatorcontrib><creatorcontrib>Jaafar, R.</creatorcontrib><creatorcontrib>Hajjar-Garreau, S.</creatorcontrib><creatorcontrib>Berling, D.</creatorcontrib><creatorcontrib>Mehdaoui, A.</creatorcontrib><creatorcontrib>Pirri, C.</creatorcontrib><creatorcontrib>Deny, E.</creatorcontrib><creatorcontrib>Florentin, A.</creatorcontrib><creatorcontrib>Uhlaq-Bouillet, C.</creatorcontrib><creatorcontrib>Garreau, G.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Thin solid films</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maafa, I.</au><au>Jaafar, R.</au><au>Hajjar-Garreau, S.</au><au>Berling, D.</au><au>Mehdaoui, A.</au><au>Pirri, C.</au><au>Deny, E.</au><au>Florentin, A.</au><au>Uhlaq-Bouillet, C.</au><au>Garreau, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interfacial properties of all-epitaxial Fe–Ge/Ge heterostructures on Ge(111)</atitle><jtitle>Thin solid films</jtitle><date>2013-10-31</date><risdate>2013</risdate><volume>545</volume><spage>257</spage><epage>266</epage><pages>257-266</pages><issn>0040-6090</issn><eissn>1879-2731</eissn><coden>THSFAP</coden><abstract>The molecular-beam-epitaxy growth of Fe–Ge/Ge/Fe–Ge trilayers on Ge(111) wafers has been investigated as a function of three parameters: the Ge spacer coverage, the substrate temperature (TD) and the dynamic atomic hydrogen (H) exposure during the Ge spacer deposition. Morphology and crystal structure have been characterized in situ by means of scanning tunneling microscopy, low energy electron diffraction, X-ray photoelectron diffraction and ex situ with high-resolution transmission microscopy. Whatever the H flux, epitaxial growth of Ge spacer requires deposition temperature above ~220°C. At the earliest stages of Ge deposition, the surface periodicity of the bottom Fe1.9Ge epilayer changes from p(2×2) to 3×3R30° for deposition temperature above ~220°C, whatever the H dosing. It results from severe intermixing that modifies the stoichiometry of the whole Fe–Ge layer. However, this layer preserves its hexagonal B82 crystal structure and no additional Fe–Ge compounds formed at the interface. We found also that the H flux drastically modifies the Ge spacer growth mode for deposition temperature above ~220°C. In particular, the Ge morphology evolves from 3D islands without H supply to flat and continuous film for H partial pressure above 10–3Pa. Finally, the top Fe–Ge electrode crystallizes in the same structure as the bottom electrode, and the planar relations of the trilayer are: (111)Ge-wafer||(0001)bottom–Fe1.9Ge||(111)Ge-spacer||(0001)top–Fe1.9Ge and [−110]Ge-wafer||[11–20]bottom–Fe1.9Ge||[1–21]Ge-spacer||[11–20]top–Fe1.9Ge. These fully epitaxial Fe–Ge/germanium hybrid heterostructures with single crystal Ge layer of diamond structure appear therefore as promising candidates for semiconductor spintronics. •Epitaxy of single crystal iron–germanium/germanium/iron–germanium trilayers•Intermixing occurs at the bottom iron–germanium/germanium spacer interface.•The bottom iron–germanium layer preserves however its crystal structure.•The spacer adopts the diamond structure for high deposition temperature.•The dynamic hydrogen supply strongly improves the spacer growth mode.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.tsf.2013.08.055</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0040-6090
ispartof Thin solid films, 2013-10, Vol.545, p.257-266
issn 0040-6090
1879-2731
language eng
recordid cdi_hal_primary_oai_HAL_hal_04404410v1
source Elsevier ScienceDirect Journals Complete
subjects Applied sciences
Chemical Sciences
Cross-disciplinary physics: materials science
rheology
Deposition
Electrodes
Electronics
Exact sciences and technology
Flux
Germanium
Growth from melts
zone melting and refining
Interfaces
Intermetallic
Iron
Magnetoelectric, magnetostrictive, magnetoacoustic, magnetooptic and magnetothermal devices. Spintronics
Materials science
Methods of crystal growth
physics of crystal growth
Methods of deposition of films and coatings
film growth and epitaxy
Molecular, atomic, ion, and chemical beam epitaxy
Molecular-beam-epitaxy
Morphology
Multilayer
Other
Physics
Scanning tunneling microscopy
Semiconductor
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Semiconductors
Spacers
Surfactant
Theory and models of film growth
X-rays photoelectron diffraction
title Interfacial properties of all-epitaxial Fe–Ge/Ge heterostructures on Ge(111)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A56%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interfacial%20properties%20of%20all-epitaxial%20Fe%E2%80%93Ge/Ge%20heterostructures%20on%20Ge(111)&rft.jtitle=Thin%20solid%20films&rft.au=Maafa,%20I.&rft.date=2013-10-31&rft.volume=545&rft.spage=257&rft.epage=266&rft.pages=257-266&rft.issn=0040-6090&rft.eissn=1879-2731&rft.coden=THSFAP&rft_id=info:doi/10.1016/j.tsf.2013.08.055&rft_dat=%3Cproquest_hal_p%3E1660062879%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1660062879&rft_id=info:pmid/&rft_els_id=S0040609013013540&rfr_iscdi=true