Interfacial properties of all-epitaxial Fe–Ge/Ge heterostructures on Ge(111)
The molecular-beam-epitaxy growth of Fe–Ge/Ge/Fe–Ge trilayers on Ge(111) wafers has been investigated as a function of three parameters: the Ge spacer coverage, the substrate temperature (TD) and the dynamic atomic hydrogen (H) exposure during the Ge spacer deposition. Morphology and crystal structu...
Gespeichert in:
Veröffentlicht in: | Thin solid films 2013-10, Vol.545, p.257-266 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 266 |
---|---|
container_issue | |
container_start_page | 257 |
container_title | Thin solid films |
container_volume | 545 |
creator | Maafa, I. Jaafar, R. Hajjar-Garreau, S. Berling, D. Mehdaoui, A. Pirri, C. Deny, E. Florentin, A. Uhlaq-Bouillet, C. Garreau, G. |
description | The molecular-beam-epitaxy growth of Fe–Ge/Ge/Fe–Ge trilayers on Ge(111) wafers has been investigated as a function of three parameters: the Ge spacer coverage, the substrate temperature (TD) and the dynamic atomic hydrogen (H) exposure during the Ge spacer deposition. Morphology and crystal structure have been characterized in situ by means of scanning tunneling microscopy, low energy electron diffraction, X-ray photoelectron diffraction and ex situ with high-resolution transmission microscopy. Whatever the H flux, epitaxial growth of Ge spacer requires deposition temperature above ~220°C. At the earliest stages of Ge deposition, the surface periodicity of the bottom Fe1.9Ge epilayer changes from p(2×2) to 3×3R30° for deposition temperature above ~220°C, whatever the H dosing. It results from severe intermixing that modifies the stoichiometry of the whole Fe–Ge layer. However, this layer preserves its hexagonal B82 crystal structure and no additional Fe–Ge compounds formed at the interface. We found also that the H flux drastically modifies the Ge spacer growth mode for deposition temperature above ~220°C. In particular, the Ge morphology evolves from 3D islands without H supply to flat and continuous film for H partial pressure above 10–3Pa. Finally, the top Fe–Ge electrode crystallizes in the same structure as the bottom electrode, and the planar relations of the trilayer are: (111)Ge-wafer||(0001)bottom–Fe1.9Ge||(111)Ge-spacer||(0001)top–Fe1.9Ge and [−110]Ge-wafer||[11–20]bottom–Fe1.9Ge||[1–21]Ge-spacer||[11–20]top–Fe1.9Ge. These fully epitaxial Fe–Ge/germanium hybrid heterostructures with single crystal Ge layer of diamond structure appear therefore as promising candidates for semiconductor spintronics.
•Epitaxy of single crystal iron–germanium/germanium/iron–germanium trilayers•Intermixing occurs at the bottom iron–germanium/germanium spacer interface.•The bottom iron–germanium layer preserves however its crystal structure.•The spacer adopts the diamond structure for high deposition temperature.•The dynamic hydrogen supply strongly improves the spacer growth mode. |
doi_str_mv | 10.1016/j.tsf.2013.08.055 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04404410v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0040609013013540</els_id><sourcerecordid>1660062879</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-85bda506245871dde50b1e8c6607dc10b5ef7059cd8bccce56f584878ffa2ac53</originalsourceid><addsrcrecordid>eNp9kM9KJDEQh8OisKPuA-ytLwt66Laqu9OdYU8izigMetFzyFRXMEPbPZtkZL35Dr6hT2KaEY9CIJB8v_rzCfEboUDA5nxTxGCLErAqQBUg5Q8xQ9XO87Kt8EDMAGrIG5jDT3EUwgYAsCyrmbi9GSJ7a8iZPtv6ccs-Og7ZaDPT9zlvXTT_p78Fv7--Lfl8ydkjp8gYot9R3PkJHrIlnyLi2Yk4tKYP_OvzPhYPi6v7y-t8dbe8ubxY5VTN65grue6MhKaspWqx61jCGllR00DbEcJasm1BzqlTayJi2VipatUqa01pSFbH4mxf99H0euvdk_EvejROX1-s9PQGdZ0OwjMm9nTPpvX-7ThE_eQCcd-bgcdd0Ji6plGSrITiHqW0X_Bsv2oj6Mmz3ujkWU-eNSidPKfMn8_yJpDprTcDufAVLFtVVlVdJ-7vnuPk5dmx14EcD8Sd80xRd6P7pssHW72SAA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660062879</pqid></control><display><type>article</type><title>Interfacial properties of all-epitaxial Fe–Ge/Ge heterostructures on Ge(111)</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Maafa, I. ; Jaafar, R. ; Hajjar-Garreau, S. ; Berling, D. ; Mehdaoui, A. ; Pirri, C. ; Deny, E. ; Florentin, A. ; Uhlaq-Bouillet, C. ; Garreau, G.</creator><creatorcontrib>Maafa, I. ; Jaafar, R. ; Hajjar-Garreau, S. ; Berling, D. ; Mehdaoui, A. ; Pirri, C. ; Deny, E. ; Florentin, A. ; Uhlaq-Bouillet, C. ; Garreau, G.</creatorcontrib><description>The molecular-beam-epitaxy growth of Fe–Ge/Ge/Fe–Ge trilayers on Ge(111) wafers has been investigated as a function of three parameters: the Ge spacer coverage, the substrate temperature (TD) and the dynamic atomic hydrogen (H) exposure during the Ge spacer deposition. Morphology and crystal structure have been characterized in situ by means of scanning tunneling microscopy, low energy electron diffraction, X-ray photoelectron diffraction and ex situ with high-resolution transmission microscopy. Whatever the H flux, epitaxial growth of Ge spacer requires deposition temperature above ~220°C. At the earliest stages of Ge deposition, the surface periodicity of the bottom Fe1.9Ge epilayer changes from p(2×2) to 3×3R30° for deposition temperature above ~220°C, whatever the H dosing. It results from severe intermixing that modifies the stoichiometry of the whole Fe–Ge layer. However, this layer preserves its hexagonal B82 crystal structure and no additional Fe–Ge compounds formed at the interface. We found also that the H flux drastically modifies the Ge spacer growth mode for deposition temperature above ~220°C. In particular, the Ge morphology evolves from 3D islands without H supply to flat and continuous film for H partial pressure above 10–3Pa. Finally, the top Fe–Ge electrode crystallizes in the same structure as the bottom electrode, and the planar relations of the trilayer are: (111)Ge-wafer||(0001)bottom–Fe1.9Ge||(111)Ge-spacer||(0001)top–Fe1.9Ge and [−110]Ge-wafer||[11–20]bottom–Fe1.9Ge||[1–21]Ge-spacer||[11–20]top–Fe1.9Ge. These fully epitaxial Fe–Ge/germanium hybrid heterostructures with single crystal Ge layer of diamond structure appear therefore as promising candidates for semiconductor spintronics.
•Epitaxy of single crystal iron–germanium/germanium/iron–germanium trilayers•Intermixing occurs at the bottom iron–germanium/germanium spacer interface.•The bottom iron–germanium layer preserves however its crystal structure.•The spacer adopts the diamond structure for high deposition temperature.•The dynamic hydrogen supply strongly improves the spacer growth mode.</description><identifier>ISSN: 0040-6090</identifier><identifier>EISSN: 1879-2731</identifier><identifier>DOI: 10.1016/j.tsf.2013.08.055</identifier><identifier>CODEN: THSFAP</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Chemical Sciences ; Cross-disciplinary physics: materials science; rheology ; Deposition ; Electrodes ; Electronics ; Exact sciences and technology ; Flux ; Germanium ; Growth from melts; zone melting and refining ; Interfaces ; Intermetallic ; Iron ; Magnetoelectric, magnetostrictive, magnetoacoustic, magnetooptic and magnetothermal devices. Spintronics ; Materials science ; Methods of crystal growth; physics of crystal growth ; Methods of deposition of films and coatings; film growth and epitaxy ; Molecular, atomic, ion, and chemical beam epitaxy ; Molecular-beam-epitaxy ; Morphology ; Multilayer ; Other ; Physics ; Scanning tunneling microscopy ; Semiconductor ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Semiconductors ; Spacers ; Surfactant ; Theory and models of film growth ; X-rays photoelectron diffraction</subject><ispartof>Thin solid films, 2013-10, Vol.545, p.257-266</ispartof><rights>2013 Elsevier B.V.</rights><rights>2014 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-85bda506245871dde50b1e8c6607dc10b5ef7059cd8bccce56f584878ffa2ac53</citedby><cites>FETCH-LOGICAL-c394t-85bda506245871dde50b1e8c6607dc10b5ef7059cd8bccce56f584878ffa2ac53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.tsf.2013.08.055$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27823344$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04404410$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Maafa, I.</creatorcontrib><creatorcontrib>Jaafar, R.</creatorcontrib><creatorcontrib>Hajjar-Garreau, S.</creatorcontrib><creatorcontrib>Berling, D.</creatorcontrib><creatorcontrib>Mehdaoui, A.</creatorcontrib><creatorcontrib>Pirri, C.</creatorcontrib><creatorcontrib>Deny, E.</creatorcontrib><creatorcontrib>Florentin, A.</creatorcontrib><creatorcontrib>Uhlaq-Bouillet, C.</creatorcontrib><creatorcontrib>Garreau, G.</creatorcontrib><title>Interfacial properties of all-epitaxial Fe–Ge/Ge heterostructures on Ge(111)</title><title>Thin solid films</title><description>The molecular-beam-epitaxy growth of Fe–Ge/Ge/Fe–Ge trilayers on Ge(111) wafers has been investigated as a function of three parameters: the Ge spacer coverage, the substrate temperature (TD) and the dynamic atomic hydrogen (H) exposure during the Ge spacer deposition. Morphology and crystal structure have been characterized in situ by means of scanning tunneling microscopy, low energy electron diffraction, X-ray photoelectron diffraction and ex situ with high-resolution transmission microscopy. Whatever the H flux, epitaxial growth of Ge spacer requires deposition temperature above ~220°C. At the earliest stages of Ge deposition, the surface periodicity of the bottom Fe1.9Ge epilayer changes from p(2×2) to 3×3R30° for deposition temperature above ~220°C, whatever the H dosing. It results from severe intermixing that modifies the stoichiometry of the whole Fe–Ge layer. However, this layer preserves its hexagonal B82 crystal structure and no additional Fe–Ge compounds formed at the interface. We found also that the H flux drastically modifies the Ge spacer growth mode for deposition temperature above ~220°C. In particular, the Ge morphology evolves from 3D islands without H supply to flat and continuous film for H partial pressure above 10–3Pa. Finally, the top Fe–Ge electrode crystallizes in the same structure as the bottom electrode, and the planar relations of the trilayer are: (111)Ge-wafer||(0001)bottom–Fe1.9Ge||(111)Ge-spacer||(0001)top–Fe1.9Ge and [−110]Ge-wafer||[11–20]bottom–Fe1.9Ge||[1–21]Ge-spacer||[11–20]top–Fe1.9Ge. These fully epitaxial Fe–Ge/germanium hybrid heterostructures with single crystal Ge layer of diamond structure appear therefore as promising candidates for semiconductor spintronics.
•Epitaxy of single crystal iron–germanium/germanium/iron–germanium trilayers•Intermixing occurs at the bottom iron–germanium/germanium spacer interface.•The bottom iron–germanium layer preserves however its crystal structure.•The spacer adopts the diamond structure for high deposition temperature.•The dynamic hydrogen supply strongly improves the spacer growth mode.</description><subject>Applied sciences</subject><subject>Chemical Sciences</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Deposition</subject><subject>Electrodes</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Flux</subject><subject>Germanium</subject><subject>Growth from melts; zone melting and refining</subject><subject>Interfaces</subject><subject>Intermetallic</subject><subject>Iron</subject><subject>Magnetoelectric, magnetostrictive, magnetoacoustic, magnetooptic and magnetothermal devices. Spintronics</subject><subject>Materials science</subject><subject>Methods of crystal growth; physics of crystal growth</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Molecular, atomic, ion, and chemical beam epitaxy</subject><subject>Molecular-beam-epitaxy</subject><subject>Morphology</subject><subject>Multilayer</subject><subject>Other</subject><subject>Physics</subject><subject>Scanning tunneling microscopy</subject><subject>Semiconductor</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Semiconductors</subject><subject>Spacers</subject><subject>Surfactant</subject><subject>Theory and models of film growth</subject><subject>X-rays photoelectron diffraction</subject><issn>0040-6090</issn><issn>1879-2731</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kM9KJDEQh8OisKPuA-ytLwt66Laqu9OdYU8izigMetFzyFRXMEPbPZtkZL35Dr6hT2KaEY9CIJB8v_rzCfEboUDA5nxTxGCLErAqQBUg5Q8xQ9XO87Kt8EDMAGrIG5jDT3EUwgYAsCyrmbi9GSJ7a8iZPtv6ccs-Og7ZaDPT9zlvXTT_p78Fv7--Lfl8ydkjp8gYot9R3PkJHrIlnyLi2Yk4tKYP_OvzPhYPi6v7y-t8dbe8ubxY5VTN65grue6MhKaspWqx61jCGllR00DbEcJasm1BzqlTayJi2VipatUqa01pSFbH4mxf99H0euvdk_EvejROX1-s9PQGdZ0OwjMm9nTPpvX-7ThE_eQCcd-bgcdd0Ji6plGSrITiHqW0X_Bsv2oj6Mmz3ujkWU-eNSidPKfMn8_yJpDprTcDufAVLFtVVlVdJ-7vnuPk5dmx14EcD8Sd80xRd6P7pssHW72SAA</recordid><startdate>20131031</startdate><enddate>20131031</enddate><creator>Maafa, I.</creator><creator>Jaafar, R.</creator><creator>Hajjar-Garreau, S.</creator><creator>Berling, D.</creator><creator>Mehdaoui, A.</creator><creator>Pirri, C.</creator><creator>Deny, E.</creator><creator>Florentin, A.</creator><creator>Uhlaq-Bouillet, C.</creator><creator>Garreau, G.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>1XC</scope></search><sort><creationdate>20131031</creationdate><title>Interfacial properties of all-epitaxial Fe–Ge/Ge heterostructures on Ge(111)</title><author>Maafa, I. ; Jaafar, R. ; Hajjar-Garreau, S. ; Berling, D. ; Mehdaoui, A. ; Pirri, C. ; Deny, E. ; Florentin, A. ; Uhlaq-Bouillet, C. ; Garreau, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-85bda506245871dde50b1e8c6607dc10b5ef7059cd8bccce56f584878ffa2ac53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Chemical Sciences</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Deposition</topic><topic>Electrodes</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Flux</topic><topic>Germanium</topic><topic>Growth from melts; zone melting and refining</topic><topic>Interfaces</topic><topic>Intermetallic</topic><topic>Iron</topic><topic>Magnetoelectric, magnetostrictive, magnetoacoustic, magnetooptic and magnetothermal devices. Spintronics</topic><topic>Materials science</topic><topic>Methods of crystal growth; physics of crystal growth</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Molecular, atomic, ion, and chemical beam epitaxy</topic><topic>Molecular-beam-epitaxy</topic><topic>Morphology</topic><topic>Multilayer</topic><topic>Other</topic><topic>Physics</topic><topic>Scanning tunneling microscopy</topic><topic>Semiconductor</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Semiconductors</topic><topic>Spacers</topic><topic>Surfactant</topic><topic>Theory and models of film growth</topic><topic>X-rays photoelectron diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maafa, I.</creatorcontrib><creatorcontrib>Jaafar, R.</creatorcontrib><creatorcontrib>Hajjar-Garreau, S.</creatorcontrib><creatorcontrib>Berling, D.</creatorcontrib><creatorcontrib>Mehdaoui, A.</creatorcontrib><creatorcontrib>Pirri, C.</creatorcontrib><creatorcontrib>Deny, E.</creatorcontrib><creatorcontrib>Florentin, A.</creatorcontrib><creatorcontrib>Uhlaq-Bouillet, C.</creatorcontrib><creatorcontrib>Garreau, G.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Thin solid films</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maafa, I.</au><au>Jaafar, R.</au><au>Hajjar-Garreau, S.</au><au>Berling, D.</au><au>Mehdaoui, A.</au><au>Pirri, C.</au><au>Deny, E.</au><au>Florentin, A.</au><au>Uhlaq-Bouillet, C.</au><au>Garreau, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interfacial properties of all-epitaxial Fe–Ge/Ge heterostructures on Ge(111)</atitle><jtitle>Thin solid films</jtitle><date>2013-10-31</date><risdate>2013</risdate><volume>545</volume><spage>257</spage><epage>266</epage><pages>257-266</pages><issn>0040-6090</issn><eissn>1879-2731</eissn><coden>THSFAP</coden><abstract>The molecular-beam-epitaxy growth of Fe–Ge/Ge/Fe–Ge trilayers on Ge(111) wafers has been investigated as a function of three parameters: the Ge spacer coverage, the substrate temperature (TD) and the dynamic atomic hydrogen (H) exposure during the Ge spacer deposition. Morphology and crystal structure have been characterized in situ by means of scanning tunneling microscopy, low energy electron diffraction, X-ray photoelectron diffraction and ex situ with high-resolution transmission microscopy. Whatever the H flux, epitaxial growth of Ge spacer requires deposition temperature above ~220°C. At the earliest stages of Ge deposition, the surface periodicity of the bottom Fe1.9Ge epilayer changes from p(2×2) to 3×3R30° for deposition temperature above ~220°C, whatever the H dosing. It results from severe intermixing that modifies the stoichiometry of the whole Fe–Ge layer. However, this layer preserves its hexagonal B82 crystal structure and no additional Fe–Ge compounds formed at the interface. We found also that the H flux drastically modifies the Ge spacer growth mode for deposition temperature above ~220°C. In particular, the Ge morphology evolves from 3D islands without H supply to flat and continuous film for H partial pressure above 10–3Pa. Finally, the top Fe–Ge electrode crystallizes in the same structure as the bottom electrode, and the planar relations of the trilayer are: (111)Ge-wafer||(0001)bottom–Fe1.9Ge||(111)Ge-spacer||(0001)top–Fe1.9Ge and [−110]Ge-wafer||[11–20]bottom–Fe1.9Ge||[1–21]Ge-spacer||[11–20]top–Fe1.9Ge. These fully epitaxial Fe–Ge/germanium hybrid heterostructures with single crystal Ge layer of diamond structure appear therefore as promising candidates for semiconductor spintronics.
•Epitaxy of single crystal iron–germanium/germanium/iron–germanium trilayers•Intermixing occurs at the bottom iron–germanium/germanium spacer interface.•The bottom iron–germanium layer preserves however its crystal structure.•The spacer adopts the diamond structure for high deposition temperature.•The dynamic hydrogen supply strongly improves the spacer growth mode.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.tsf.2013.08.055</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0040-6090 |
ispartof | Thin solid films, 2013-10, Vol.545, p.257-266 |
issn | 0040-6090 1879-2731 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04404410v1 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Applied sciences Chemical Sciences Cross-disciplinary physics: materials science rheology Deposition Electrodes Electronics Exact sciences and technology Flux Germanium Growth from melts zone melting and refining Interfaces Intermetallic Iron Magnetoelectric, magnetostrictive, magnetoacoustic, magnetooptic and magnetothermal devices. Spintronics Materials science Methods of crystal growth physics of crystal growth Methods of deposition of films and coatings film growth and epitaxy Molecular, atomic, ion, and chemical beam epitaxy Molecular-beam-epitaxy Morphology Multilayer Other Physics Scanning tunneling microscopy Semiconductor Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Semiconductors Spacers Surfactant Theory and models of film growth X-rays photoelectron diffraction |
title | Interfacial properties of all-epitaxial Fe–Ge/Ge heterostructures on Ge(111) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A56%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interfacial%20properties%20of%20all-epitaxial%20Fe%E2%80%93Ge/Ge%20heterostructures%20on%20Ge(111)&rft.jtitle=Thin%20solid%20films&rft.au=Maafa,%20I.&rft.date=2013-10-31&rft.volume=545&rft.spage=257&rft.epage=266&rft.pages=257-266&rft.issn=0040-6090&rft.eissn=1879-2731&rft.coden=THSFAP&rft_id=info:doi/10.1016/j.tsf.2013.08.055&rft_dat=%3Cproquest_hal_p%3E1660062879%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1660062879&rft_id=info:pmid/&rft_els_id=S0040609013013540&rfr_iscdi=true |