Lovász–Schrijver PSD-operator and the stable set polytope of claw-free graphs

The subject of this work is the study of LS+-perfect graphs defined as those graphs G for which the stable set polytope STAB(G) is achieved in one iteration of Lovász–Schrijver PSD-operator LS+, applied to its edge relaxation ESTAB(G). The recently formulated LS+-Perfect Graph Conjecture aims at a c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete Applied Mathematics 2023-06, Vol.332, p.70-86
Hauptverfasser: Bianchi, Silvia M., Escalante, Mariana S., Nasini, Graciela L., Wagler, Annegret K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 86
container_issue
container_start_page 70
container_title Discrete Applied Mathematics
container_volume 332
creator Bianchi, Silvia M.
Escalante, Mariana S.
Nasini, Graciela L.
Wagler, Annegret K.
description The subject of this work is the study of LS+-perfect graphs defined as those graphs G for which the stable set polytope STAB(G) is achieved in one iteration of Lovász–Schrijver PSD-operator LS+, applied to its edge relaxation ESTAB(G). The recently formulated LS+-Perfect Graph Conjecture aims at a characterization of this family of graphs, through the structure of the facet defining inequalities of the stable set polytope. The main contribution of this work is to verify it for the well-studied class of claw-free graphs.
doi_str_mv 10.1016/j.dam.2023.01.012
format Article
fullrecord <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04404041v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166218X2300015X</els_id><sourcerecordid>S0166218X2300015X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1761-f6e0500779a72440c49b037e7233e75af71eeab795565e2489a368b836ed65cf3</originalsourceid><addsrcrecordid>eNp9UMFKxDAUzEHBdfUDvOXqoTVJ26TF07LqrlBwYRW8hTR9tS3dTUlKZT35D36B3-Kf-CVmWfEob2BgmBl4g9AFJSEllF-1Yak2ISMsCgn1YEdo4nUeMJo-n6BT51pCvEzTCVrlZvz6dG_f7x9rXdumHcHi1fomMD1YNRiL1bbEQw3YDaroPMGAe9PtBm_ApsK6U69BZQHwi1V97c7QcaU6B-e_PEVPd7eP82WQPyzu57M80FRwGlQcSEKIEJkSLI6JjrOCRAIEiyIQiaoEBVCFyJKEJ8DiNFMRT4s04lDyRFfRFF0eemvVyd42G2V30qhGLme53GvEt_qjI_VeevBqa5yzUP0FKJH7yWQr_WRyP5kk1IP5zPUhA_6JsQErnW5gq6FsLOhBlqb5J_0D-aN2JA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Lovász–Schrijver PSD-operator and the stable set polytope of claw-free graphs</title><source>Elsevier ScienceDirect Journals</source><creator>Bianchi, Silvia M. ; Escalante, Mariana S. ; Nasini, Graciela L. ; Wagler, Annegret K.</creator><creatorcontrib>Bianchi, Silvia M. ; Escalante, Mariana S. ; Nasini, Graciela L. ; Wagler, Annegret K.</creatorcontrib><description>The subject of this work is the study of LS+-perfect graphs defined as those graphs G for which the stable set polytope STAB(G) is achieved in one iteration of Lovász–Schrijver PSD-operator LS+, applied to its edge relaxation ESTAB(G). The recently formulated LS+-Perfect Graph Conjecture aims at a characterization of this family of graphs, through the structure of the facet defining inequalities of the stable set polytope. The main contribution of this work is to verify it for the well-studied class of claw-free graphs.</description><identifier>ISSN: 0166-218X</identifier><identifier>DOI: 10.1016/j.dam.2023.01.012</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Claw-free graphs ; Computer Science ; Discrete Mathematics ; Semidefinite relaxation ; Stable set problem</subject><ispartof>Discrete Applied Mathematics, 2023-06, Vol.332, p.70-86</ispartof><rights>2023 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1761-f6e0500779a72440c49b037e7233e75af71eeab795565e2489a368b836ed65cf3</citedby><cites>FETCH-LOGICAL-c1761-f6e0500779a72440c49b037e7233e75af71eeab795565e2489a368b836ed65cf3</cites><orcidid>0000-0002-6055-1176 ; 0000-0003-3422-9295</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0166218X2300015X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04404041$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bianchi, Silvia M.</creatorcontrib><creatorcontrib>Escalante, Mariana S.</creatorcontrib><creatorcontrib>Nasini, Graciela L.</creatorcontrib><creatorcontrib>Wagler, Annegret K.</creatorcontrib><title>Lovász–Schrijver PSD-operator and the stable set polytope of claw-free graphs</title><title>Discrete Applied Mathematics</title><description>The subject of this work is the study of LS+-perfect graphs defined as those graphs G for which the stable set polytope STAB(G) is achieved in one iteration of Lovász–Schrijver PSD-operator LS+, applied to its edge relaxation ESTAB(G). The recently formulated LS+-Perfect Graph Conjecture aims at a characterization of this family of graphs, through the structure of the facet defining inequalities of the stable set polytope. The main contribution of this work is to verify it for the well-studied class of claw-free graphs.</description><subject>Claw-free graphs</subject><subject>Computer Science</subject><subject>Discrete Mathematics</subject><subject>Semidefinite relaxation</subject><subject>Stable set problem</subject><issn>0166-218X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9UMFKxDAUzEHBdfUDvOXqoTVJ26TF07LqrlBwYRW8hTR9tS3dTUlKZT35D36B3-Kf-CVmWfEob2BgmBl4g9AFJSEllF-1Yak2ISMsCgn1YEdo4nUeMJo-n6BT51pCvEzTCVrlZvz6dG_f7x9rXdumHcHi1fomMD1YNRiL1bbEQw3YDaroPMGAe9PtBm_ApsK6U69BZQHwi1V97c7QcaU6B-e_PEVPd7eP82WQPyzu57M80FRwGlQcSEKIEJkSLI6JjrOCRAIEiyIQiaoEBVCFyJKEJ8DiNFMRT4s04lDyRFfRFF0eemvVyd42G2V30qhGLme53GvEt_qjI_VeevBqa5yzUP0FKJH7yWQr_WRyP5kk1IP5zPUhA_6JsQErnW5gq6FsLOhBlqb5J_0D-aN2JA</recordid><startdate>202306</startdate><enddate>202306</enddate><creator>Bianchi, Silvia M.</creator><creator>Escalante, Mariana S.</creator><creator>Nasini, Graciela L.</creator><creator>Wagler, Annegret K.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-6055-1176</orcidid><orcidid>https://orcid.org/0000-0003-3422-9295</orcidid></search><sort><creationdate>202306</creationdate><title>Lovász–Schrijver PSD-operator and the stable set polytope of claw-free graphs</title><author>Bianchi, Silvia M. ; Escalante, Mariana S. ; Nasini, Graciela L. ; Wagler, Annegret K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1761-f6e0500779a72440c49b037e7233e75af71eeab795565e2489a368b836ed65cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Claw-free graphs</topic><topic>Computer Science</topic><topic>Discrete Mathematics</topic><topic>Semidefinite relaxation</topic><topic>Stable set problem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bianchi, Silvia M.</creatorcontrib><creatorcontrib>Escalante, Mariana S.</creatorcontrib><creatorcontrib>Nasini, Graciela L.</creatorcontrib><creatorcontrib>Wagler, Annegret K.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Discrete Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bianchi, Silvia M.</au><au>Escalante, Mariana S.</au><au>Nasini, Graciela L.</au><au>Wagler, Annegret K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lovász–Schrijver PSD-operator and the stable set polytope of claw-free graphs</atitle><jtitle>Discrete Applied Mathematics</jtitle><date>2023-06</date><risdate>2023</risdate><volume>332</volume><spage>70</spage><epage>86</epage><pages>70-86</pages><issn>0166-218X</issn><abstract>The subject of this work is the study of LS+-perfect graphs defined as those graphs G for which the stable set polytope STAB(G) is achieved in one iteration of Lovász–Schrijver PSD-operator LS+, applied to its edge relaxation ESTAB(G). The recently formulated LS+-Perfect Graph Conjecture aims at a characterization of this family of graphs, through the structure of the facet defining inequalities of the stable set polytope. The main contribution of this work is to verify it for the well-studied class of claw-free graphs.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.dam.2023.01.012</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-6055-1176</orcidid><orcidid>https://orcid.org/0000-0003-3422-9295</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0166-218X
ispartof Discrete Applied Mathematics, 2023-06, Vol.332, p.70-86
issn 0166-218X
language eng
recordid cdi_hal_primary_oai_HAL_hal_04404041v1
source Elsevier ScienceDirect Journals
subjects Claw-free graphs
Computer Science
Discrete Mathematics
Semidefinite relaxation
Stable set problem
title Lovász–Schrijver PSD-operator and the stable set polytope of claw-free graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T12%3A53%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lov%C3%A1sz%E2%80%93Schrijver%20PSD-operator%20and%20the%20stable%20set%20polytope%20of%20claw-free%20graphs&rft.jtitle=Discrete%20Applied%20Mathematics&rft.au=Bianchi,%20Silvia%20M.&rft.date=2023-06&rft.volume=332&rft.spage=70&rft.epage=86&rft.pages=70-86&rft.issn=0166-218X&rft_id=info:doi/10.1016/j.dam.2023.01.012&rft_dat=%3Celsevier_hal_p%3ES0166218X2300015X%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0166218X2300015X&rfr_iscdi=true