Lovász–Schrijver PSD-operator and the stable set polytope of claw-free graphs
The subject of this work is the study of LS+-perfect graphs defined as those graphs G for which the stable set polytope STAB(G) is achieved in one iteration of Lovász–Schrijver PSD-operator LS+, applied to its edge relaxation ESTAB(G). The recently formulated LS+-Perfect Graph Conjecture aims at a c...
Gespeichert in:
Veröffentlicht in: | Discrete Applied Mathematics 2023-06, Vol.332, p.70-86 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 86 |
---|---|
container_issue | |
container_start_page | 70 |
container_title | Discrete Applied Mathematics |
container_volume | 332 |
creator | Bianchi, Silvia M. Escalante, Mariana S. Nasini, Graciela L. Wagler, Annegret K. |
description | The subject of this work is the study of LS+-perfect graphs defined as those graphs G for which the stable set polytope STAB(G) is achieved in one iteration of Lovász–Schrijver PSD-operator LS+, applied to its edge relaxation ESTAB(G). The recently formulated LS+-Perfect Graph Conjecture aims at a characterization of this family of graphs, through the structure of the facet defining inequalities of the stable set polytope. The main contribution of this work is to verify it for the well-studied class of claw-free graphs. |
doi_str_mv | 10.1016/j.dam.2023.01.012 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04404041v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166218X2300015X</els_id><sourcerecordid>S0166218X2300015X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1761-f6e0500779a72440c49b037e7233e75af71eeab795565e2489a368b836ed65cf3</originalsourceid><addsrcrecordid>eNp9UMFKxDAUzEHBdfUDvOXqoTVJ26TF07LqrlBwYRW8hTR9tS3dTUlKZT35D36B3-Kf-CVmWfEob2BgmBl4g9AFJSEllF-1Yak2ISMsCgn1YEdo4nUeMJo-n6BT51pCvEzTCVrlZvz6dG_f7x9rXdumHcHi1fomMD1YNRiL1bbEQw3YDaroPMGAe9PtBm_ApsK6U69BZQHwi1V97c7QcaU6B-e_PEVPd7eP82WQPyzu57M80FRwGlQcSEKIEJkSLI6JjrOCRAIEiyIQiaoEBVCFyJKEJ8DiNFMRT4s04lDyRFfRFF0eemvVyd42G2V30qhGLme53GvEt_qjI_VeevBqa5yzUP0FKJH7yWQr_WRyP5kk1IP5zPUhA_6JsQErnW5gq6FsLOhBlqb5J_0D-aN2JA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Lovász–Schrijver PSD-operator and the stable set polytope of claw-free graphs</title><source>Elsevier ScienceDirect Journals</source><creator>Bianchi, Silvia M. ; Escalante, Mariana S. ; Nasini, Graciela L. ; Wagler, Annegret K.</creator><creatorcontrib>Bianchi, Silvia M. ; Escalante, Mariana S. ; Nasini, Graciela L. ; Wagler, Annegret K.</creatorcontrib><description>The subject of this work is the study of LS+-perfect graphs defined as those graphs G for which the stable set polytope STAB(G) is achieved in one iteration of Lovász–Schrijver PSD-operator LS+, applied to its edge relaxation ESTAB(G). The recently formulated LS+-Perfect Graph Conjecture aims at a characterization of this family of graphs, through the structure of the facet defining inequalities of the stable set polytope. The main contribution of this work is to verify it for the well-studied class of claw-free graphs.</description><identifier>ISSN: 0166-218X</identifier><identifier>DOI: 10.1016/j.dam.2023.01.012</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Claw-free graphs ; Computer Science ; Discrete Mathematics ; Semidefinite relaxation ; Stable set problem</subject><ispartof>Discrete Applied Mathematics, 2023-06, Vol.332, p.70-86</ispartof><rights>2023 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1761-f6e0500779a72440c49b037e7233e75af71eeab795565e2489a368b836ed65cf3</citedby><cites>FETCH-LOGICAL-c1761-f6e0500779a72440c49b037e7233e75af71eeab795565e2489a368b836ed65cf3</cites><orcidid>0000-0002-6055-1176 ; 0000-0003-3422-9295</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0166218X2300015X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04404041$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bianchi, Silvia M.</creatorcontrib><creatorcontrib>Escalante, Mariana S.</creatorcontrib><creatorcontrib>Nasini, Graciela L.</creatorcontrib><creatorcontrib>Wagler, Annegret K.</creatorcontrib><title>Lovász–Schrijver PSD-operator and the stable set polytope of claw-free graphs</title><title>Discrete Applied Mathematics</title><description>The subject of this work is the study of LS+-perfect graphs defined as those graphs G for which the stable set polytope STAB(G) is achieved in one iteration of Lovász–Schrijver PSD-operator LS+, applied to its edge relaxation ESTAB(G). The recently formulated LS+-Perfect Graph Conjecture aims at a characterization of this family of graphs, through the structure of the facet defining inequalities of the stable set polytope. The main contribution of this work is to verify it for the well-studied class of claw-free graphs.</description><subject>Claw-free graphs</subject><subject>Computer Science</subject><subject>Discrete Mathematics</subject><subject>Semidefinite relaxation</subject><subject>Stable set problem</subject><issn>0166-218X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9UMFKxDAUzEHBdfUDvOXqoTVJ26TF07LqrlBwYRW8hTR9tS3dTUlKZT35D36B3-Kf-CVmWfEob2BgmBl4g9AFJSEllF-1Yak2ISMsCgn1YEdo4nUeMJo-n6BT51pCvEzTCVrlZvz6dG_f7x9rXdumHcHi1fomMD1YNRiL1bbEQw3YDaroPMGAe9PtBm_ApsK6U69BZQHwi1V97c7QcaU6B-e_PEVPd7eP82WQPyzu57M80FRwGlQcSEKIEJkSLI6JjrOCRAIEiyIQiaoEBVCFyJKEJ8DiNFMRT4s04lDyRFfRFF0eemvVyd42G2V30qhGLme53GvEt_qjI_VeevBqa5yzUP0FKJH7yWQr_WRyP5kk1IP5zPUhA_6JsQErnW5gq6FsLOhBlqb5J_0D-aN2JA</recordid><startdate>202306</startdate><enddate>202306</enddate><creator>Bianchi, Silvia M.</creator><creator>Escalante, Mariana S.</creator><creator>Nasini, Graciela L.</creator><creator>Wagler, Annegret K.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-6055-1176</orcidid><orcidid>https://orcid.org/0000-0003-3422-9295</orcidid></search><sort><creationdate>202306</creationdate><title>Lovász–Schrijver PSD-operator and the stable set polytope of claw-free graphs</title><author>Bianchi, Silvia M. ; Escalante, Mariana S. ; Nasini, Graciela L. ; Wagler, Annegret K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1761-f6e0500779a72440c49b037e7233e75af71eeab795565e2489a368b836ed65cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Claw-free graphs</topic><topic>Computer Science</topic><topic>Discrete Mathematics</topic><topic>Semidefinite relaxation</topic><topic>Stable set problem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bianchi, Silvia M.</creatorcontrib><creatorcontrib>Escalante, Mariana S.</creatorcontrib><creatorcontrib>Nasini, Graciela L.</creatorcontrib><creatorcontrib>Wagler, Annegret K.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Discrete Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bianchi, Silvia M.</au><au>Escalante, Mariana S.</au><au>Nasini, Graciela L.</au><au>Wagler, Annegret K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lovász–Schrijver PSD-operator and the stable set polytope of claw-free graphs</atitle><jtitle>Discrete Applied Mathematics</jtitle><date>2023-06</date><risdate>2023</risdate><volume>332</volume><spage>70</spage><epage>86</epage><pages>70-86</pages><issn>0166-218X</issn><abstract>The subject of this work is the study of LS+-perfect graphs defined as those graphs G for which the stable set polytope STAB(G) is achieved in one iteration of Lovász–Schrijver PSD-operator LS+, applied to its edge relaxation ESTAB(G). The recently formulated LS+-Perfect Graph Conjecture aims at a characterization of this family of graphs, through the structure of the facet defining inequalities of the stable set polytope. The main contribution of this work is to verify it for the well-studied class of claw-free graphs.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.dam.2023.01.012</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-6055-1176</orcidid><orcidid>https://orcid.org/0000-0003-3422-9295</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0166-218X |
ispartof | Discrete Applied Mathematics, 2023-06, Vol.332, p.70-86 |
issn | 0166-218X |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04404041v1 |
source | Elsevier ScienceDirect Journals |
subjects | Claw-free graphs Computer Science Discrete Mathematics Semidefinite relaxation Stable set problem |
title | Lovász–Schrijver PSD-operator and the stable set polytope of claw-free graphs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T12%3A53%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lov%C3%A1sz%E2%80%93Schrijver%20PSD-operator%20and%20the%20stable%20set%20polytope%20of%20claw-free%20graphs&rft.jtitle=Discrete%20Applied%20Mathematics&rft.au=Bianchi,%20Silvia%20M.&rft.date=2023-06&rft.volume=332&rft.spage=70&rft.epage=86&rft.pages=70-86&rft.issn=0166-218X&rft_id=info:doi/10.1016/j.dam.2023.01.012&rft_dat=%3Celsevier_hal_p%3ES0166218X2300015X%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0166218X2300015X&rfr_iscdi=true |