Action of the automorphism group on the Jacobian of Klein's quartic curve II: Invariant theta functions

Bernstein-Schwarzman conjectured that the quotient of a complex affine space by an irreducible complex crystallographic group generated by reflections is a weighted projective space. The conjecture was proved by Schwarzman and Tokunaga-Yoshida in dimension 2 for almost all such groups, and for all c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Épijournal de géométrie algébrique 2024-01, Vol.8
Hauptverfasser: Markushevich, Dimitri, Moreau, Anne
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Épijournal de géométrie algébrique
container_volume 8
creator Markushevich, Dimitri
Moreau, Anne
description Bernstein-Schwarzman conjectured that the quotient of a complex affine space by an irreducible complex crystallographic group generated by reflections is a weighted projective space. The conjecture was proved by Schwarzman and Tokunaga-Yoshida in dimension 2 for almost all such groups, and for all crystallographic reflection groups of Coxeter type by Looijenga, Bernstein-Schwarzman and Kac-Peterson in any dimension. We prove that the conjecture is true for the crystallographic reflection group in dimension 3 for which the associated collineation group is Klein's simple group of order 168. In this case the quotient is the 3-dimensional weighted projective space with weights 1, 2, 4, 7. The main ingredient in the proof is the computation of the algebra of invariant theta functions. Unlike the Coxeter case, the invariant algebra is not free polynomial, and this was the major stumbling block. Comment: 21 pages, 1 figure. Final version typeset in the EPIGA style
doi_str_mv 10.46298/epiga.2024.11511
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04391974v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_04391974v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c161t-acbfb058a229b0d983a24f5fb4f7e9b8fa5bbd1faecad227acfd500767a3c6443</originalsourceid><addsrcrecordid>eNpNkLFOwzAQhi0EEhX0Adi8IYYU23HimK2qgAYqscBsnR27NWrjYieVeHuaFCGmO93__Td8CN1QMuMlk9W93fs1zBhhfEZpQekZmjAuaVaKsjj_t1-iaUqfhBDGeCGFmKD13HQ-tDg43G0shr4LuxD3G592eB1Dv8fHcEhewATtYSRft9a3twl_9RA7b7Dp48Hiun7AdXuAeKS6odMBdn07_k_X6MLBNtnp77xCH0-P74tltnp7rhfzVWZoSbsMjHaaFBUwJjVpZJUD465wmjthpa4cFFo31IE10DAmwLimIESUAnJTcp5fobvT3w1s1T76HcRvFcCr5XylhhvhuaRS8AM9svTEmhhSitb9FShRo1g1ilWDWDWKzX8AmqduBg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Action of the automorphism group on the Jacobian of Klein's quartic curve II: Invariant theta functions</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Markushevich, Dimitri ; Moreau, Anne</creator><creatorcontrib>Markushevich, Dimitri ; Moreau, Anne</creatorcontrib><description>Bernstein-Schwarzman conjectured that the quotient of a complex affine space by an irreducible complex crystallographic group generated by reflections is a weighted projective space. The conjecture was proved by Schwarzman and Tokunaga-Yoshida in dimension 2 for almost all such groups, and for all crystallographic reflection groups of Coxeter type by Looijenga, Bernstein-Schwarzman and Kac-Peterson in any dimension. We prove that the conjecture is true for the crystallographic reflection group in dimension 3 for which the associated collineation group is Klein's simple group of order 168. In this case the quotient is the 3-dimensional weighted projective space with weights 1, 2, 4, 7. The main ingredient in the proof is the computation of the algebra of invariant theta functions. Unlike the Coxeter case, the invariant algebra is not free polynomial, and this was the major stumbling block. Comment: 21 pages, 1 figure. Final version typeset in the EPIGA style</description><identifier>ISSN: 2491-6765</identifier><identifier>EISSN: 2491-6765</identifier><identifier>DOI: 10.46298/epiga.2024.11511</identifier><language>eng</language><publisher>EPIGA</publisher><subject>Algebraic Geometry ; Mathematics</subject><ispartof>Épijournal de géométrie algébrique, 2024-01, Vol.8</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,861,882,27905,27906</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04391974$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Markushevich, Dimitri</creatorcontrib><creatorcontrib>Moreau, Anne</creatorcontrib><title>Action of the automorphism group on the Jacobian of Klein's quartic curve II: Invariant theta functions</title><title>Épijournal de géométrie algébrique</title><description>Bernstein-Schwarzman conjectured that the quotient of a complex affine space by an irreducible complex crystallographic group generated by reflections is a weighted projective space. The conjecture was proved by Schwarzman and Tokunaga-Yoshida in dimension 2 for almost all such groups, and for all crystallographic reflection groups of Coxeter type by Looijenga, Bernstein-Schwarzman and Kac-Peterson in any dimension. We prove that the conjecture is true for the crystallographic reflection group in dimension 3 for which the associated collineation group is Klein's simple group of order 168. In this case the quotient is the 3-dimensional weighted projective space with weights 1, 2, 4, 7. The main ingredient in the proof is the computation of the algebra of invariant theta functions. Unlike the Coxeter case, the invariant algebra is not free polynomial, and this was the major stumbling block. Comment: 21 pages, 1 figure. Final version typeset in the EPIGA style</description><subject>Algebraic Geometry</subject><subject>Mathematics</subject><issn>2491-6765</issn><issn>2491-6765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkLFOwzAQhi0EEhX0Adi8IYYU23HimK2qgAYqscBsnR27NWrjYieVeHuaFCGmO93__Td8CN1QMuMlk9W93fs1zBhhfEZpQekZmjAuaVaKsjj_t1-iaUqfhBDGeCGFmKD13HQ-tDg43G0shr4LuxD3G592eB1Dv8fHcEhewATtYSRft9a3twl_9RA7b7Dp48Hiun7AdXuAeKS6odMBdn07_k_X6MLBNtnp77xCH0-P74tltnp7rhfzVWZoSbsMjHaaFBUwJjVpZJUD465wmjthpa4cFFo31IE10DAmwLimIESUAnJTcp5fobvT3w1s1T76HcRvFcCr5XylhhvhuaRS8AM9svTEmhhSitb9FShRo1g1ilWDWDWKzX8AmqduBg</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Markushevich, Dimitri</creator><creator>Moreau, Anne</creator><general>EPIGA</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20240101</creationdate><title>Action of the automorphism group on the Jacobian of Klein's quartic curve II: Invariant theta functions</title><author>Markushevich, Dimitri ; Moreau, Anne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c161t-acbfb058a229b0d983a24f5fb4f7e9b8fa5bbd1faecad227acfd500767a3c6443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algebraic Geometry</topic><topic>Mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Markushevich, Dimitri</creatorcontrib><creatorcontrib>Moreau, Anne</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Épijournal de géométrie algébrique</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Markushevich, Dimitri</au><au>Moreau, Anne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Action of the automorphism group on the Jacobian of Klein's quartic curve II: Invariant theta functions</atitle><jtitle>Épijournal de géométrie algébrique</jtitle><date>2024-01-01</date><risdate>2024</risdate><volume>8</volume><issn>2491-6765</issn><eissn>2491-6765</eissn><abstract>Bernstein-Schwarzman conjectured that the quotient of a complex affine space by an irreducible complex crystallographic group generated by reflections is a weighted projective space. The conjecture was proved by Schwarzman and Tokunaga-Yoshida in dimension 2 for almost all such groups, and for all crystallographic reflection groups of Coxeter type by Looijenga, Bernstein-Schwarzman and Kac-Peterson in any dimension. We prove that the conjecture is true for the crystallographic reflection group in dimension 3 for which the associated collineation group is Klein's simple group of order 168. In this case the quotient is the 3-dimensional weighted projective space with weights 1, 2, 4, 7. The main ingredient in the proof is the computation of the algebra of invariant theta functions. Unlike the Coxeter case, the invariant algebra is not free polynomial, and this was the major stumbling block. Comment: 21 pages, 1 figure. Final version typeset in the EPIGA style</abstract><pub>EPIGA</pub><doi>10.46298/epiga.2024.11511</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2491-6765
ispartof Épijournal de géométrie algébrique, 2024-01, Vol.8
issn 2491-6765
2491-6765
language eng
recordid cdi_hal_primary_oai_HAL_hal_04391974v1
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Algebraic Geometry
Mathematics
title Action of the automorphism group on the Jacobian of Klein's quartic curve II: Invariant theta functions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T23%3A52%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Action%20of%20the%20automorphism%20group%20on%20the%20Jacobian%20of%20Klein's%20quartic%20curve%20II:%20Invariant%20theta%20functions&rft.jtitle=%C3%89pijournal%20de%20g%C3%A9om%C3%A9trie%20alg%C3%A9brique&rft.au=Markushevich,%20Dimitri&rft.date=2024-01-01&rft.volume=8&rft.issn=2491-6765&rft.eissn=2491-6765&rft_id=info:doi/10.46298/epiga.2024.11511&rft_dat=%3Chal_cross%3Eoai_HAL_hal_04391974v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true