Modified bald eagle search algorithm for lithium-ion battery model parameters extraction
Bald eagle search algorithm (BES) is a recent metaheuristic algorithm based on bald eagle hunting behavior. Like other metaheuristic algorithms, the BES algorithm is prone to entangle in local optimums due to limited diversity, sluggish convergence rate, or improper equilibrium between exploitation...
Gespeichert in:
Veröffentlicht in: | ISA transactions 2023-03, Vol.134, p.357-379 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 379 |
---|---|
container_issue | |
container_start_page | 357 |
container_title | ISA transactions |
container_volume | 134 |
creator | Ferahtia, Seydali Rezk, Hegazy Djerioui, Ali Houari, Azeddine Motahhir, Saad Zeghlache, Samir |
description | Bald eagle search algorithm (BES) is a recent metaheuristic algorithm based on bald eagle hunting behavior. Like other metaheuristic algorithms, the BES algorithm is prone to entangle in local optimums due to limited diversity, sluggish convergence rate, or improper equilibrium between exploitation and exploration. Thus, adaptive parameters are injected into the original BES to overcome these shortcomings. These parameters are a function of the current and the max number of iterations. They provide the eagle with more diversity during the exploration and exploitation phases. The modified BES is tested on test functions provided by Congress on Evolutionary Computation 2020 and Congress on Evolutionary Computation 2022. The obtained results are compared to that of other reliable and recent algorithms. In addition, analysis of variance and Tuckey tests are utilized to confirm the results’ significance. Due to its benefits, lithium-ion batteries are employed in more and more applications. However, extracting its parameters is challenging due to its complex model. Hence, the proposed algorithm will handle this task to approve its performance in complex problems. The significant benefit of this extraction method is its excellent precision, with fitness value declining (root mean square error) to 0.89 × 10−3 compared to the original BES (1.013 × 10−3) with a standard deviation of 1.12 × 10−3. To confirm the performance of mBES, a second battery was tested with the New European Driving Cycle profile. The mBES has the lowest fitness values (0.058896) and the least standard deviation (5.89 × 10−7).
•A new MA named mBES is created based on the standard BES algorithm.•Estimation of a Li-ion battery model to validate the performance of the proposed mBES.•Compared to its competitors, mBES has demonstrated more confident and dependable conduct.•The proposed method’s superiority is demonstrated. |
doi_str_mv | 10.1016/j.isatra.2022.08.025 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04391439v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0019057822004281</els_id><sourcerecordid>2712854960</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-c31531de29ae611037e560a64668ac4de54bb2cbaf3c1400cee4fe1972058b253</originalsourceid><addsrcrecordid>eNp9kMFu3CAQhlHVqtmkfYMo4tgc7A5gY3ypFEVpEmmrXlqpN4RhnGWFly14o-bty9ZpjjkAo18fM6OPkHMGNQMmP29rn82cTM2B8xpUDbx9Q1ZMdX11jN6SFQDrK2g7dUJOc94CFKRX78mJkKAUE2JFfn2Lzo8eHR1McBTNQ0Ca0SS7oSY8xOTnzUTHmGgolT9MlY-7ws4zpic6RYeB7k0yE5YgU_xTNrJzYT6Qd6MJGT8-v2fk59ebH9d31fr77f311bqyopdzuVkrmEPeG5SMgeiwlWBkI6UytnHYNsPA7WBGYVkDYBGbEVnfcWjVwFtxRi6XvhsT9D75yaQnHY3Xd1drfcygET0r55EV9tPC7lP8fcA868lniyGYHcZD1rxjXLVNL6GgzYLaFHNOOL70ZqCP_vVWL_71UbYGpeHfNhfPEw7DhO7l03_hBfiyAFicPHpMOluPO4vOJ7SzdtG_PuEvegWYQA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2712854960</pqid></control><display><type>article</type><title>Modified bald eagle search algorithm for lithium-ion battery model parameters extraction</title><source>Access via ScienceDirect (Elsevier)</source><creator>Ferahtia, Seydali ; Rezk, Hegazy ; Djerioui, Ali ; Houari, Azeddine ; Motahhir, Saad ; Zeghlache, Samir</creator><creatorcontrib>Ferahtia, Seydali ; Rezk, Hegazy ; Djerioui, Ali ; Houari, Azeddine ; Motahhir, Saad ; Zeghlache, Samir</creatorcontrib><description>Bald eagle search algorithm (BES) is a recent metaheuristic algorithm based on bald eagle hunting behavior. Like other metaheuristic algorithms, the BES algorithm is prone to entangle in local optimums due to limited diversity, sluggish convergence rate, or improper equilibrium between exploitation and exploration. Thus, adaptive parameters are injected into the original BES to overcome these shortcomings. These parameters are a function of the current and the max number of iterations. They provide the eagle with more diversity during the exploration and exploitation phases. The modified BES is tested on test functions provided by Congress on Evolutionary Computation 2020 and Congress on Evolutionary Computation 2022. The obtained results are compared to that of other reliable and recent algorithms. In addition, analysis of variance and Tuckey tests are utilized to confirm the results’ significance. Due to its benefits, lithium-ion batteries are employed in more and more applications. However, extracting its parameters is challenging due to its complex model. Hence, the proposed algorithm will handle this task to approve its performance in complex problems. The significant benefit of this extraction method is its excellent precision, with fitness value declining (root mean square error) to 0.89 × 10−3 compared to the original BES (1.013 × 10−3) with a standard deviation of 1.12 × 10−3. To confirm the performance of mBES, a second battery was tested with the New European Driving Cycle profile. The mBES has the lowest fitness values (0.058896) and the least standard deviation (5.89 × 10−7).
•A new MA named mBES is created based on the standard BES algorithm.•Estimation of a Li-ion battery model to validate the performance of the proposed mBES.•Compared to its competitors, mBES has demonstrated more confident and dependable conduct.•The proposed method’s superiority is demonstrated.</description><identifier>ISSN: 0019-0578</identifier><identifier>EISSN: 1879-2022</identifier><identifier>DOI: 10.1016/j.isatra.2022.08.025</identifier><identifier>PMID: 36088133</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Bald eagle search algorithm (BES) ; Engineering Sciences ; Lithium-ion battery model ; Metaheuristic optimization algorithms (MAs) ; Parameters identification</subject><ispartof>ISA transactions, 2023-03, Vol.134, p.357-379</ispartof><rights>2022 ISA</rights><rights>Copyright © 2022 ISA. Published by Elsevier Ltd. All rights reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-c31531de29ae611037e560a64668ac4de54bb2cbaf3c1400cee4fe1972058b253</citedby><cites>FETCH-LOGICAL-c396t-c31531de29ae611037e560a64668ac4de54bb2cbaf3c1400cee4fe1972058b253</cites><orcidid>0000-0003-4831-874X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.isatra.2022.08.025$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36088133$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04391439$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ferahtia, Seydali</creatorcontrib><creatorcontrib>Rezk, Hegazy</creatorcontrib><creatorcontrib>Djerioui, Ali</creatorcontrib><creatorcontrib>Houari, Azeddine</creatorcontrib><creatorcontrib>Motahhir, Saad</creatorcontrib><creatorcontrib>Zeghlache, Samir</creatorcontrib><title>Modified bald eagle search algorithm for lithium-ion battery model parameters extraction</title><title>ISA transactions</title><addtitle>ISA Trans</addtitle><description>Bald eagle search algorithm (BES) is a recent metaheuristic algorithm based on bald eagle hunting behavior. Like other metaheuristic algorithms, the BES algorithm is prone to entangle in local optimums due to limited diversity, sluggish convergence rate, or improper equilibrium between exploitation and exploration. Thus, adaptive parameters are injected into the original BES to overcome these shortcomings. These parameters are a function of the current and the max number of iterations. They provide the eagle with more diversity during the exploration and exploitation phases. The modified BES is tested on test functions provided by Congress on Evolutionary Computation 2020 and Congress on Evolutionary Computation 2022. The obtained results are compared to that of other reliable and recent algorithms. In addition, analysis of variance and Tuckey tests are utilized to confirm the results’ significance. Due to its benefits, lithium-ion batteries are employed in more and more applications. However, extracting its parameters is challenging due to its complex model. Hence, the proposed algorithm will handle this task to approve its performance in complex problems. The significant benefit of this extraction method is its excellent precision, with fitness value declining (root mean square error) to 0.89 × 10−3 compared to the original BES (1.013 × 10−3) with a standard deviation of 1.12 × 10−3. To confirm the performance of mBES, a second battery was tested with the New European Driving Cycle profile. The mBES has the lowest fitness values (0.058896) and the least standard deviation (5.89 × 10−7).
•A new MA named mBES is created based on the standard BES algorithm.•Estimation of a Li-ion battery model to validate the performance of the proposed mBES.•Compared to its competitors, mBES has demonstrated more confident and dependable conduct.•The proposed method’s superiority is demonstrated.</description><subject>Bald eagle search algorithm (BES)</subject><subject>Engineering Sciences</subject><subject>Lithium-ion battery model</subject><subject>Metaheuristic optimization algorithms (MAs)</subject><subject>Parameters identification</subject><issn>0019-0578</issn><issn>1879-2022</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMFu3CAQhlHVqtmkfYMo4tgc7A5gY3ypFEVpEmmrXlqpN4RhnGWFly14o-bty9ZpjjkAo18fM6OPkHMGNQMmP29rn82cTM2B8xpUDbx9Q1ZMdX11jN6SFQDrK2g7dUJOc94CFKRX78mJkKAUE2JFfn2Lzo8eHR1McBTNQ0Ca0SS7oSY8xOTnzUTHmGgolT9MlY-7ws4zpic6RYeB7k0yE5YgU_xTNrJzYT6Qd6MJGT8-v2fk59ebH9d31fr77f311bqyopdzuVkrmEPeG5SMgeiwlWBkI6UytnHYNsPA7WBGYVkDYBGbEVnfcWjVwFtxRi6XvhsT9D75yaQnHY3Xd1drfcygET0r55EV9tPC7lP8fcA868lniyGYHcZD1rxjXLVNL6GgzYLaFHNOOL70ZqCP_vVWL_71UbYGpeHfNhfPEw7DhO7l03_hBfiyAFicPHpMOluPO4vOJ7SzdtG_PuEvegWYQA</recordid><startdate>202303</startdate><enddate>202303</enddate><creator>Ferahtia, Seydali</creator><creator>Rezk, Hegazy</creator><creator>Djerioui, Ali</creator><creator>Houari, Azeddine</creator><creator>Motahhir, Saad</creator><creator>Zeghlache, Samir</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-4831-874X</orcidid></search><sort><creationdate>202303</creationdate><title>Modified bald eagle search algorithm for lithium-ion battery model parameters extraction</title><author>Ferahtia, Seydali ; Rezk, Hegazy ; Djerioui, Ali ; Houari, Azeddine ; Motahhir, Saad ; Zeghlache, Samir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-c31531de29ae611037e560a64668ac4de54bb2cbaf3c1400cee4fe1972058b253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bald eagle search algorithm (BES)</topic><topic>Engineering Sciences</topic><topic>Lithium-ion battery model</topic><topic>Metaheuristic optimization algorithms (MAs)</topic><topic>Parameters identification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ferahtia, Seydali</creatorcontrib><creatorcontrib>Rezk, Hegazy</creatorcontrib><creatorcontrib>Djerioui, Ali</creatorcontrib><creatorcontrib>Houari, Azeddine</creatorcontrib><creatorcontrib>Motahhir, Saad</creatorcontrib><creatorcontrib>Zeghlache, Samir</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>ISA transactions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ferahtia, Seydali</au><au>Rezk, Hegazy</au><au>Djerioui, Ali</au><au>Houari, Azeddine</au><au>Motahhir, Saad</au><au>Zeghlache, Samir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modified bald eagle search algorithm for lithium-ion battery model parameters extraction</atitle><jtitle>ISA transactions</jtitle><addtitle>ISA Trans</addtitle><date>2023-03</date><risdate>2023</risdate><volume>134</volume><spage>357</spage><epage>379</epage><pages>357-379</pages><issn>0019-0578</issn><eissn>1879-2022</eissn><abstract>Bald eagle search algorithm (BES) is a recent metaheuristic algorithm based on bald eagle hunting behavior. Like other metaheuristic algorithms, the BES algorithm is prone to entangle in local optimums due to limited diversity, sluggish convergence rate, or improper equilibrium between exploitation and exploration. Thus, adaptive parameters are injected into the original BES to overcome these shortcomings. These parameters are a function of the current and the max number of iterations. They provide the eagle with more diversity during the exploration and exploitation phases. The modified BES is tested on test functions provided by Congress on Evolutionary Computation 2020 and Congress on Evolutionary Computation 2022. The obtained results are compared to that of other reliable and recent algorithms. In addition, analysis of variance and Tuckey tests are utilized to confirm the results’ significance. Due to its benefits, lithium-ion batteries are employed in more and more applications. However, extracting its parameters is challenging due to its complex model. Hence, the proposed algorithm will handle this task to approve its performance in complex problems. The significant benefit of this extraction method is its excellent precision, with fitness value declining (root mean square error) to 0.89 × 10−3 compared to the original BES (1.013 × 10−3) with a standard deviation of 1.12 × 10−3. To confirm the performance of mBES, a second battery was tested with the New European Driving Cycle profile. The mBES has the lowest fitness values (0.058896) and the least standard deviation (5.89 × 10−7).
•A new MA named mBES is created based on the standard BES algorithm.•Estimation of a Li-ion battery model to validate the performance of the proposed mBES.•Compared to its competitors, mBES has demonstrated more confident and dependable conduct.•The proposed method’s superiority is demonstrated.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>36088133</pmid><doi>10.1016/j.isatra.2022.08.025</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0003-4831-874X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0019-0578 |
ispartof | ISA transactions, 2023-03, Vol.134, p.357-379 |
issn | 0019-0578 1879-2022 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04391439v1 |
source | Access via ScienceDirect (Elsevier) |
subjects | Bald eagle search algorithm (BES) Engineering Sciences Lithium-ion battery model Metaheuristic optimization algorithms (MAs) Parameters identification |
title | Modified bald eagle search algorithm for lithium-ion battery model parameters extraction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A02%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modified%20bald%20eagle%20search%20algorithm%20for%20lithium-ion%20battery%20model%20parameters%20extraction&rft.jtitle=ISA%20transactions&rft.au=Ferahtia,%20Seydali&rft.date=2023-03&rft.volume=134&rft.spage=357&rft.epage=379&rft.pages=357-379&rft.issn=0019-0578&rft.eissn=1879-2022&rft_id=info:doi/10.1016/j.isatra.2022.08.025&rft_dat=%3Cproquest_hal_p%3E2712854960%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2712854960&rft_id=info:pmid/36088133&rft_els_id=S0019057822004281&rfr_iscdi=true |