Modified bald eagle search algorithm for lithium-ion battery model parameters extraction

Bald eagle search algorithm (BES) is a recent metaheuristic algorithm based on bald eagle hunting behavior. Like other metaheuristic algorithms, the BES algorithm is prone to entangle in local optimums due to limited diversity, sluggish convergence rate, or improper equilibrium between exploitation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ISA transactions 2023-03, Vol.134, p.357-379
Hauptverfasser: Ferahtia, Seydali, Rezk, Hegazy, Djerioui, Ali, Houari, Azeddine, Motahhir, Saad, Zeghlache, Samir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 379
container_issue
container_start_page 357
container_title ISA transactions
container_volume 134
creator Ferahtia, Seydali
Rezk, Hegazy
Djerioui, Ali
Houari, Azeddine
Motahhir, Saad
Zeghlache, Samir
description Bald eagle search algorithm (BES) is a recent metaheuristic algorithm based on bald eagle hunting behavior. Like other metaheuristic algorithms, the BES algorithm is prone to entangle in local optimums due to limited diversity, sluggish convergence rate, or improper equilibrium between exploitation and exploration. Thus, adaptive parameters are injected into the original BES to overcome these shortcomings. These parameters are a function of the current and the max number of iterations. They provide the eagle with more diversity during the exploration and exploitation phases. The modified BES is tested on test functions provided by Congress on Evolutionary Computation 2020 and Congress on Evolutionary Computation 2022. The obtained results are compared to that of other reliable and recent algorithms. In addition, analysis of variance and Tuckey tests are utilized to confirm the results’ significance. Due to its benefits, lithium-ion batteries are employed in more and more applications. However, extracting its parameters is challenging due to its complex model. Hence, the proposed algorithm will handle this task to approve its performance in complex problems. The significant benefit of this extraction method is its excellent precision, with fitness value declining (root mean square error) to 0.89 × 10−3 compared to the original BES (1.013 × 10−3) with a standard deviation of 1.12 × 10−3. To confirm the performance of mBES, a second battery was tested with the New European Driving Cycle profile. The mBES has the lowest fitness values (0.058896) and the least standard deviation (5.89 × 10−7). •A new MA named mBES is created based on the standard BES algorithm.•Estimation of a Li-ion battery model to validate the performance of the proposed mBES.•Compared to its competitors, mBES has demonstrated more confident and dependable conduct.•The proposed method’s superiority is demonstrated.
doi_str_mv 10.1016/j.isatra.2022.08.025
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04391439v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0019057822004281</els_id><sourcerecordid>2712854960</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-c31531de29ae611037e560a64668ac4de54bb2cbaf3c1400cee4fe1972058b253</originalsourceid><addsrcrecordid>eNp9kMFu3CAQhlHVqtmkfYMo4tgc7A5gY3ypFEVpEmmrXlqpN4RhnGWFly14o-bty9ZpjjkAo18fM6OPkHMGNQMmP29rn82cTM2B8xpUDbx9Q1ZMdX11jN6SFQDrK2g7dUJOc94CFKRX78mJkKAUE2JFfn2Lzo8eHR1McBTNQ0Ca0SS7oSY8xOTnzUTHmGgolT9MlY-7ws4zpic6RYeB7k0yE5YgU_xTNrJzYT6Qd6MJGT8-v2fk59ebH9d31fr77f311bqyopdzuVkrmEPeG5SMgeiwlWBkI6UytnHYNsPA7WBGYVkDYBGbEVnfcWjVwFtxRi6XvhsT9D75yaQnHY3Xd1drfcygET0r55EV9tPC7lP8fcA868lniyGYHcZD1rxjXLVNL6GgzYLaFHNOOL70ZqCP_vVWL_71UbYGpeHfNhfPEw7DhO7l03_hBfiyAFicPHpMOluPO4vOJ7SzdtG_PuEvegWYQA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2712854960</pqid></control><display><type>article</type><title>Modified bald eagle search algorithm for lithium-ion battery model parameters extraction</title><source>Access via ScienceDirect (Elsevier)</source><creator>Ferahtia, Seydali ; Rezk, Hegazy ; Djerioui, Ali ; Houari, Azeddine ; Motahhir, Saad ; Zeghlache, Samir</creator><creatorcontrib>Ferahtia, Seydali ; Rezk, Hegazy ; Djerioui, Ali ; Houari, Azeddine ; Motahhir, Saad ; Zeghlache, Samir</creatorcontrib><description>Bald eagle search algorithm (BES) is a recent metaheuristic algorithm based on bald eagle hunting behavior. Like other metaheuristic algorithms, the BES algorithm is prone to entangle in local optimums due to limited diversity, sluggish convergence rate, or improper equilibrium between exploitation and exploration. Thus, adaptive parameters are injected into the original BES to overcome these shortcomings. These parameters are a function of the current and the max number of iterations. They provide the eagle with more diversity during the exploration and exploitation phases. The modified BES is tested on test functions provided by Congress on Evolutionary Computation 2020 and Congress on Evolutionary Computation 2022. The obtained results are compared to that of other reliable and recent algorithms. In addition, analysis of variance and Tuckey tests are utilized to confirm the results’ significance. Due to its benefits, lithium-ion batteries are employed in more and more applications. However, extracting its parameters is challenging due to its complex model. Hence, the proposed algorithm will handle this task to approve its performance in complex problems. The significant benefit of this extraction method is its excellent precision, with fitness value declining (root mean square error) to 0.89 × 10−3 compared to the original BES (1.013 × 10−3) with a standard deviation of 1.12 × 10−3. To confirm the performance of mBES, a second battery was tested with the New European Driving Cycle profile. The mBES has the lowest fitness values (0.058896) and the least standard deviation (5.89 × 10−7). •A new MA named mBES is created based on the standard BES algorithm.•Estimation of a Li-ion battery model to validate the performance of the proposed mBES.•Compared to its competitors, mBES has demonstrated more confident and dependable conduct.•The proposed method’s superiority is demonstrated.</description><identifier>ISSN: 0019-0578</identifier><identifier>EISSN: 1879-2022</identifier><identifier>DOI: 10.1016/j.isatra.2022.08.025</identifier><identifier>PMID: 36088133</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Bald eagle search algorithm (BES) ; Engineering Sciences ; Lithium-ion battery model ; Metaheuristic optimization algorithms (MAs) ; Parameters identification</subject><ispartof>ISA transactions, 2023-03, Vol.134, p.357-379</ispartof><rights>2022 ISA</rights><rights>Copyright © 2022 ISA. Published by Elsevier Ltd. All rights reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-c31531de29ae611037e560a64668ac4de54bb2cbaf3c1400cee4fe1972058b253</citedby><cites>FETCH-LOGICAL-c396t-c31531de29ae611037e560a64668ac4de54bb2cbaf3c1400cee4fe1972058b253</cites><orcidid>0000-0003-4831-874X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.isatra.2022.08.025$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36088133$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04391439$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ferahtia, Seydali</creatorcontrib><creatorcontrib>Rezk, Hegazy</creatorcontrib><creatorcontrib>Djerioui, Ali</creatorcontrib><creatorcontrib>Houari, Azeddine</creatorcontrib><creatorcontrib>Motahhir, Saad</creatorcontrib><creatorcontrib>Zeghlache, Samir</creatorcontrib><title>Modified bald eagle search algorithm for lithium-ion battery model parameters extraction</title><title>ISA transactions</title><addtitle>ISA Trans</addtitle><description>Bald eagle search algorithm (BES) is a recent metaheuristic algorithm based on bald eagle hunting behavior. Like other metaheuristic algorithms, the BES algorithm is prone to entangle in local optimums due to limited diversity, sluggish convergence rate, or improper equilibrium between exploitation and exploration. Thus, adaptive parameters are injected into the original BES to overcome these shortcomings. These parameters are a function of the current and the max number of iterations. They provide the eagle with more diversity during the exploration and exploitation phases. The modified BES is tested on test functions provided by Congress on Evolutionary Computation 2020 and Congress on Evolutionary Computation 2022. The obtained results are compared to that of other reliable and recent algorithms. In addition, analysis of variance and Tuckey tests are utilized to confirm the results’ significance. Due to its benefits, lithium-ion batteries are employed in more and more applications. However, extracting its parameters is challenging due to its complex model. Hence, the proposed algorithm will handle this task to approve its performance in complex problems. The significant benefit of this extraction method is its excellent precision, with fitness value declining (root mean square error) to 0.89 × 10−3 compared to the original BES (1.013 × 10−3) with a standard deviation of 1.12 × 10−3. To confirm the performance of mBES, a second battery was tested with the New European Driving Cycle profile. The mBES has the lowest fitness values (0.058896) and the least standard deviation (5.89 × 10−7). •A new MA named mBES is created based on the standard BES algorithm.•Estimation of a Li-ion battery model to validate the performance of the proposed mBES.•Compared to its competitors, mBES has demonstrated more confident and dependable conduct.•The proposed method’s superiority is demonstrated.</description><subject>Bald eagle search algorithm (BES)</subject><subject>Engineering Sciences</subject><subject>Lithium-ion battery model</subject><subject>Metaheuristic optimization algorithms (MAs)</subject><subject>Parameters identification</subject><issn>0019-0578</issn><issn>1879-2022</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMFu3CAQhlHVqtmkfYMo4tgc7A5gY3ypFEVpEmmrXlqpN4RhnGWFly14o-bty9ZpjjkAo18fM6OPkHMGNQMmP29rn82cTM2B8xpUDbx9Q1ZMdX11jN6SFQDrK2g7dUJOc94CFKRX78mJkKAUE2JFfn2Lzo8eHR1McBTNQ0Ca0SS7oSY8xOTnzUTHmGgolT9MlY-7ws4zpic6RYeB7k0yE5YgU_xTNrJzYT6Qd6MJGT8-v2fk59ebH9d31fr77f311bqyopdzuVkrmEPeG5SMgeiwlWBkI6UytnHYNsPA7WBGYVkDYBGbEVnfcWjVwFtxRi6XvhsT9D75yaQnHY3Xd1drfcygET0r55EV9tPC7lP8fcA868lniyGYHcZD1rxjXLVNL6GgzYLaFHNOOL70ZqCP_vVWL_71UbYGpeHfNhfPEw7DhO7l03_hBfiyAFicPHpMOluPO4vOJ7SzdtG_PuEvegWYQA</recordid><startdate>202303</startdate><enddate>202303</enddate><creator>Ferahtia, Seydali</creator><creator>Rezk, Hegazy</creator><creator>Djerioui, Ali</creator><creator>Houari, Azeddine</creator><creator>Motahhir, Saad</creator><creator>Zeghlache, Samir</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-4831-874X</orcidid></search><sort><creationdate>202303</creationdate><title>Modified bald eagle search algorithm for lithium-ion battery model parameters extraction</title><author>Ferahtia, Seydali ; Rezk, Hegazy ; Djerioui, Ali ; Houari, Azeddine ; Motahhir, Saad ; Zeghlache, Samir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-c31531de29ae611037e560a64668ac4de54bb2cbaf3c1400cee4fe1972058b253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bald eagle search algorithm (BES)</topic><topic>Engineering Sciences</topic><topic>Lithium-ion battery model</topic><topic>Metaheuristic optimization algorithms (MAs)</topic><topic>Parameters identification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ferahtia, Seydali</creatorcontrib><creatorcontrib>Rezk, Hegazy</creatorcontrib><creatorcontrib>Djerioui, Ali</creatorcontrib><creatorcontrib>Houari, Azeddine</creatorcontrib><creatorcontrib>Motahhir, Saad</creatorcontrib><creatorcontrib>Zeghlache, Samir</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>ISA transactions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ferahtia, Seydali</au><au>Rezk, Hegazy</au><au>Djerioui, Ali</au><au>Houari, Azeddine</au><au>Motahhir, Saad</au><au>Zeghlache, Samir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modified bald eagle search algorithm for lithium-ion battery model parameters extraction</atitle><jtitle>ISA transactions</jtitle><addtitle>ISA Trans</addtitle><date>2023-03</date><risdate>2023</risdate><volume>134</volume><spage>357</spage><epage>379</epage><pages>357-379</pages><issn>0019-0578</issn><eissn>1879-2022</eissn><abstract>Bald eagle search algorithm (BES) is a recent metaheuristic algorithm based on bald eagle hunting behavior. Like other metaheuristic algorithms, the BES algorithm is prone to entangle in local optimums due to limited diversity, sluggish convergence rate, or improper equilibrium between exploitation and exploration. Thus, adaptive parameters are injected into the original BES to overcome these shortcomings. These parameters are a function of the current and the max number of iterations. They provide the eagle with more diversity during the exploration and exploitation phases. The modified BES is tested on test functions provided by Congress on Evolutionary Computation 2020 and Congress on Evolutionary Computation 2022. The obtained results are compared to that of other reliable and recent algorithms. In addition, analysis of variance and Tuckey tests are utilized to confirm the results’ significance. Due to its benefits, lithium-ion batteries are employed in more and more applications. However, extracting its parameters is challenging due to its complex model. Hence, the proposed algorithm will handle this task to approve its performance in complex problems. The significant benefit of this extraction method is its excellent precision, with fitness value declining (root mean square error) to 0.89 × 10−3 compared to the original BES (1.013 × 10−3) with a standard deviation of 1.12 × 10−3. To confirm the performance of mBES, a second battery was tested with the New European Driving Cycle profile. The mBES has the lowest fitness values (0.058896) and the least standard deviation (5.89 × 10−7). •A new MA named mBES is created based on the standard BES algorithm.•Estimation of a Li-ion battery model to validate the performance of the proposed mBES.•Compared to its competitors, mBES has demonstrated more confident and dependable conduct.•The proposed method’s superiority is demonstrated.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>36088133</pmid><doi>10.1016/j.isatra.2022.08.025</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0003-4831-874X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0019-0578
ispartof ISA transactions, 2023-03, Vol.134, p.357-379
issn 0019-0578
1879-2022
language eng
recordid cdi_hal_primary_oai_HAL_hal_04391439v1
source Access via ScienceDirect (Elsevier)
subjects Bald eagle search algorithm (BES)
Engineering Sciences
Lithium-ion battery model
Metaheuristic optimization algorithms (MAs)
Parameters identification
title Modified bald eagle search algorithm for lithium-ion battery model parameters extraction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A02%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modified%20bald%20eagle%20search%20algorithm%20for%20lithium-ion%20battery%20model%20parameters%20extraction&rft.jtitle=ISA%20transactions&rft.au=Ferahtia,%20Seydali&rft.date=2023-03&rft.volume=134&rft.spage=357&rft.epage=379&rft.pages=357-379&rft.issn=0019-0578&rft.eissn=1879-2022&rft_id=info:doi/10.1016/j.isatra.2022.08.025&rft_dat=%3Cproquest_hal_p%3E2712854960%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2712854960&rft_id=info:pmid/36088133&rft_els_id=S0019057822004281&rfr_iscdi=true