Coupled heat transfers resolution by Monte Carlo in urban geometry including direct and diffuse solar irradiations

Modelling transient combined heat transfer in complex urban geometry is a key step to predict human exposure or energy consumption and to quantify the effect of climate change mitigation and adaptation measures. A difficulty lies in the possibility for a model to scale up and integrate large and com...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of heat and mass transfer 2024-05, Vol.222, p.125139, Article 125139
Hauptverfasser: Caliot, Cyril, d'Alençon, Louis, Blanco, Stéphane, Forest, Vincent, Fournier, Richard, Hourdin, Frédéric, Retailleau, Florent, Schoetter, Robert, Villefranque, Najda
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 125139
container_title International journal of heat and mass transfer
container_volume 222
creator Caliot, Cyril
d'Alençon, Louis
Blanco, Stéphane
Forest, Vincent
Fournier, Richard
Hourdin, Frédéric
Retailleau, Florent
Schoetter, Robert
Villefranque, Najda
description Modelling transient combined heat transfer in complex urban geometry is a key step to predict human exposure or energy consumption and to quantify the effect of climate change mitigation and adaptation measures. A difficulty lies in the possibility for a model to scale up and integrate large and complex urban morphology. We develop a probabilistic approach to solve heat transfers with the Monte Carlo method that is insensitive to the complexity of both the urban geometry and the boundary conditions. The integral formulation that includes random walks for each heat transfer mode is presented and the computation of absorbed solar irradiations at walls with the double randomization technique is detailed. Numerical validations are given through comparisons with deterministic method results for single and two-layer slabs, but also a three-dimensional thermal bridge geometry. The developed probabilistic heat transfer model is then used in a demonstration heat wave scenario where are computed: the outdoor mean radiant temperature showing the influence of trees; and the indoor average wall temperature showing the influence of solar gains through windows. •Coupled Monte Carlo method for conduction-convection-radiation problems.•Use of ray-tracing, walk-on-sphere and double randomisation techniques.•Introduction of direct and diffuse solar irradiations in the probability method.•Numerical validations in 1D and 3D urban geometries.•Temperature computations in 3D urban morphology with trees for heat wave conditions.
doi_str_mv 10.1016/j.ijheatmasstransfer.2023.125139
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04387332v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S001793102301284X</els_id><sourcerecordid>oai_HAL_hal_04387332v2</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-4038a8b00649c31425fadcc4d23b8db2e9c7ac88819d4a866e6298242cce1bfe3</originalsourceid><addsrcrecordid>eNqVkclOwzAQhi0EEmV5Bx_hkOCtqXOjqlhVxAXO1sSegKs0ruwEqW9PogAXLnCa7Z9PmvkJueAs54wXV5vcb94Rui2k1EVoU40xF0zInIs5l-UBmXG9KDPBdXlIZozxRVZKzo7JSUqbsWSqmJG4Cv2uQUdHFv0GJRoxhabvfGhptadPoe2QriA2gfqW9rGClr5h2GIX90PHNr3z7Rt1PqLtKLRuSOu6T0gHDETqYwTnYeSlM3JUQ5Pw_Cuektfbm5fVfbZ-vntYLdeZVWzeZYpJDbpirFCllVyJeQ3OWuWErLSrBJZ2AVZrzUunQBcFFqLUQglrkVc1ylNyOXHfoTG76LcQ9yaAN_fLtRl7TEm9kFJ8iH9o-aC9nrQ2hpQi1j8LnJnRG7Mxv70xozdm8mZAPE4IHO7_8MM0WY-txemBxgX_d9gn1ZOlrw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Coupled heat transfers resolution by Monte Carlo in urban geometry including direct and diffuse solar irradiations</title><source>Access via ScienceDirect (Elsevier)</source><creator>Caliot, Cyril ; d'Alençon, Louis ; Blanco, Stéphane ; Forest, Vincent ; Fournier, Richard ; Hourdin, Frédéric ; Retailleau, Florent ; Schoetter, Robert ; Villefranque, Najda</creator><creatorcontrib>Caliot, Cyril ; d'Alençon, Louis ; Blanco, Stéphane ; Forest, Vincent ; Fournier, Richard ; Hourdin, Frédéric ; Retailleau, Florent ; Schoetter, Robert ; Villefranque, Najda</creatorcontrib><description>Modelling transient combined heat transfer in complex urban geometry is a key step to predict human exposure or energy consumption and to quantify the effect of climate change mitigation and adaptation measures. A difficulty lies in the possibility for a model to scale up and integrate large and complex urban morphology. We develop a probabilistic approach to solve heat transfers with the Monte Carlo method that is insensitive to the complexity of both the urban geometry and the boundary conditions. The integral formulation that includes random walks for each heat transfer mode is presented and the computation of absorbed solar irradiations at walls with the double randomization technique is detailed. Numerical validations are given through comparisons with deterministic method results for single and two-layer slabs, but also a three-dimensional thermal bridge geometry. The developed probabilistic heat transfer model is then used in a demonstration heat wave scenario where are computed: the outdoor mean radiant temperature showing the influence of trees; and the indoor average wall temperature showing the influence of solar gains through windows. •Coupled Monte Carlo method for conduction-convection-radiation problems.•Use of ray-tracing, walk-on-sphere and double randomisation techniques.•Introduction of direct and diffuse solar irradiations in the probability method.•Numerical validations in 1D and 3D urban geometries.•Temperature computations in 3D urban morphology with trees for heat wave conditions.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/j.ijheatmasstransfer.2023.125139</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Building energy consumption ; Coupled heat transfer ; Earth Sciences ; Engineering Sciences ; Indoor and outdoor human thermal comfort ; Mechanics ; Meteorology ; Monte Carlo ; Sciences of the Universe ; Solar irradiation ; Thermal inertia ; Thermics</subject><ispartof>International journal of heat and mass transfer, 2024-05, Vol.222, p.125139, Article 125139</ispartof><rights>2023 Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c405t-4038a8b00649c31425fadcc4d23b8db2e9c7ac88819d4a866e6298242cce1bfe3</cites><orcidid>0000-0002-0092-3150 ; 0000-0003-3994-5637 ; 0000-0003-0389-5375 ; 0000-0002-4687-2635</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijheatmasstransfer.2023.125139$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04387332$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Caliot, Cyril</creatorcontrib><creatorcontrib>d'Alençon, Louis</creatorcontrib><creatorcontrib>Blanco, Stéphane</creatorcontrib><creatorcontrib>Forest, Vincent</creatorcontrib><creatorcontrib>Fournier, Richard</creatorcontrib><creatorcontrib>Hourdin, Frédéric</creatorcontrib><creatorcontrib>Retailleau, Florent</creatorcontrib><creatorcontrib>Schoetter, Robert</creatorcontrib><creatorcontrib>Villefranque, Najda</creatorcontrib><title>Coupled heat transfers resolution by Monte Carlo in urban geometry including direct and diffuse solar irradiations</title><title>International journal of heat and mass transfer</title><description>Modelling transient combined heat transfer in complex urban geometry is a key step to predict human exposure or energy consumption and to quantify the effect of climate change mitigation and adaptation measures. A difficulty lies in the possibility for a model to scale up and integrate large and complex urban morphology. We develop a probabilistic approach to solve heat transfers with the Monte Carlo method that is insensitive to the complexity of both the urban geometry and the boundary conditions. The integral formulation that includes random walks for each heat transfer mode is presented and the computation of absorbed solar irradiations at walls with the double randomization technique is detailed. Numerical validations are given through comparisons with deterministic method results for single and two-layer slabs, but also a three-dimensional thermal bridge geometry. The developed probabilistic heat transfer model is then used in a demonstration heat wave scenario where are computed: the outdoor mean radiant temperature showing the influence of trees; and the indoor average wall temperature showing the influence of solar gains through windows. •Coupled Monte Carlo method for conduction-convection-radiation problems.•Use of ray-tracing, walk-on-sphere and double randomisation techniques.•Introduction of direct and diffuse solar irradiations in the probability method.•Numerical validations in 1D and 3D urban geometries.•Temperature computations in 3D urban morphology with trees for heat wave conditions.</description><subject>Building energy consumption</subject><subject>Coupled heat transfer</subject><subject>Earth Sciences</subject><subject>Engineering Sciences</subject><subject>Indoor and outdoor human thermal comfort</subject><subject>Mechanics</subject><subject>Meteorology</subject><subject>Monte Carlo</subject><subject>Sciences of the Universe</subject><subject>Solar irradiation</subject><subject>Thermal inertia</subject><subject>Thermics</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqVkclOwzAQhi0EEmV5Bx_hkOCtqXOjqlhVxAXO1sSegKs0ruwEqW9PogAXLnCa7Z9PmvkJueAs54wXV5vcb94Rui2k1EVoU40xF0zInIs5l-UBmXG9KDPBdXlIZozxRVZKzo7JSUqbsWSqmJG4Cv2uQUdHFv0GJRoxhabvfGhptadPoe2QriA2gfqW9rGClr5h2GIX90PHNr3z7Rt1PqLtKLRuSOu6T0gHDETqYwTnYeSlM3JUQ5Pw_Cuektfbm5fVfbZ-vntYLdeZVWzeZYpJDbpirFCllVyJeQ3OWuWErLSrBJZ2AVZrzUunQBcFFqLUQglrkVc1ylNyOXHfoTG76LcQ9yaAN_fLtRl7TEm9kFJ8iH9o-aC9nrQ2hpQi1j8LnJnRG7Mxv70xozdm8mZAPE4IHO7_8MM0WY-txemBxgX_d9gn1ZOlrw</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Caliot, Cyril</creator><creator>d'Alençon, Louis</creator><creator>Blanco, Stéphane</creator><creator>Forest, Vincent</creator><creator>Fournier, Richard</creator><creator>Hourdin, Frédéric</creator><creator>Retailleau, Florent</creator><creator>Schoetter, Robert</creator><creator>Villefranque, Najda</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-0092-3150</orcidid><orcidid>https://orcid.org/0000-0003-3994-5637</orcidid><orcidid>https://orcid.org/0000-0003-0389-5375</orcidid><orcidid>https://orcid.org/0000-0002-4687-2635</orcidid></search><sort><creationdate>20240501</creationdate><title>Coupled heat transfers resolution by Monte Carlo in urban geometry including direct and diffuse solar irradiations</title><author>Caliot, Cyril ; d'Alençon, Louis ; Blanco, Stéphane ; Forest, Vincent ; Fournier, Richard ; Hourdin, Frédéric ; Retailleau, Florent ; Schoetter, Robert ; Villefranque, Najda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-4038a8b00649c31425fadcc4d23b8db2e9c7ac88819d4a866e6298242cce1bfe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Building energy consumption</topic><topic>Coupled heat transfer</topic><topic>Earth Sciences</topic><topic>Engineering Sciences</topic><topic>Indoor and outdoor human thermal comfort</topic><topic>Mechanics</topic><topic>Meteorology</topic><topic>Monte Carlo</topic><topic>Sciences of the Universe</topic><topic>Solar irradiation</topic><topic>Thermal inertia</topic><topic>Thermics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caliot, Cyril</creatorcontrib><creatorcontrib>d'Alençon, Louis</creatorcontrib><creatorcontrib>Blanco, Stéphane</creatorcontrib><creatorcontrib>Forest, Vincent</creatorcontrib><creatorcontrib>Fournier, Richard</creatorcontrib><creatorcontrib>Hourdin, Frédéric</creatorcontrib><creatorcontrib>Retailleau, Florent</creatorcontrib><creatorcontrib>Schoetter, Robert</creatorcontrib><creatorcontrib>Villefranque, Najda</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Caliot, Cyril</au><au>d'Alençon, Louis</au><au>Blanco, Stéphane</au><au>Forest, Vincent</au><au>Fournier, Richard</au><au>Hourdin, Frédéric</au><au>Retailleau, Florent</au><au>Schoetter, Robert</au><au>Villefranque, Najda</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coupled heat transfers resolution by Monte Carlo in urban geometry including direct and diffuse solar irradiations</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2024-05-01</date><risdate>2024</risdate><volume>222</volume><spage>125139</spage><pages>125139-</pages><artnum>125139</artnum><issn>0017-9310</issn><eissn>1879-2189</eissn><abstract>Modelling transient combined heat transfer in complex urban geometry is a key step to predict human exposure or energy consumption and to quantify the effect of climate change mitigation and adaptation measures. A difficulty lies in the possibility for a model to scale up and integrate large and complex urban morphology. We develop a probabilistic approach to solve heat transfers with the Monte Carlo method that is insensitive to the complexity of both the urban geometry and the boundary conditions. The integral formulation that includes random walks for each heat transfer mode is presented and the computation of absorbed solar irradiations at walls with the double randomization technique is detailed. Numerical validations are given through comparisons with deterministic method results for single and two-layer slabs, but also a three-dimensional thermal bridge geometry. The developed probabilistic heat transfer model is then used in a demonstration heat wave scenario where are computed: the outdoor mean radiant temperature showing the influence of trees; and the indoor average wall temperature showing the influence of solar gains through windows. •Coupled Monte Carlo method for conduction-convection-radiation problems.•Use of ray-tracing, walk-on-sphere and double randomisation techniques.•Introduction of direct and diffuse solar irradiations in the probability method.•Numerical validations in 1D and 3D urban geometries.•Temperature computations in 3D urban morphology with trees for heat wave conditions.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ijheatmasstransfer.2023.125139</doi><orcidid>https://orcid.org/0000-0002-0092-3150</orcidid><orcidid>https://orcid.org/0000-0003-3994-5637</orcidid><orcidid>https://orcid.org/0000-0003-0389-5375</orcidid><orcidid>https://orcid.org/0000-0002-4687-2635</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0017-9310
ispartof International journal of heat and mass transfer, 2024-05, Vol.222, p.125139, Article 125139
issn 0017-9310
1879-2189
language eng
recordid cdi_hal_primary_oai_HAL_hal_04387332v2
source Access via ScienceDirect (Elsevier)
subjects Building energy consumption
Coupled heat transfer
Earth Sciences
Engineering Sciences
Indoor and outdoor human thermal comfort
Mechanics
Meteorology
Monte Carlo
Sciences of the Universe
Solar irradiation
Thermal inertia
Thermics
title Coupled heat transfers resolution by Monte Carlo in urban geometry including direct and diffuse solar irradiations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T13%3A27%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coupled%20heat%20transfers%20resolution%20by%20Monte%20Carlo%20in%20urban%20geometry%20including%20direct%20and%20diffuse%20solar%20irradiations&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Caliot,%20Cyril&rft.date=2024-05-01&rft.volume=222&rft.spage=125139&rft.pages=125139-&rft.artnum=125139&rft.issn=0017-9310&rft.eissn=1879-2189&rft_id=info:doi/10.1016/j.ijheatmasstransfer.2023.125139&rft_dat=%3Chal_cross%3Eoai_HAL_hal_04387332v2%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S001793102301284X&rfr_iscdi=true