On Cumulative Tsallis Entropies

We investigate the cumulative Tsallis entropy, an information measure recently introduced as a cumulative version of the classical Tsallis differential entropy, which is itself a generalization of the Boltzmann-Gibbs statistics. This functional is here considered as a perturbation of the expected me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta applicandae mathematicae 2023-12, Vol.188 (1), p.9, Article 9
Hauptverfasser: Simon, Thomas, Dulac, Guillaume
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 9
container_title Acta applicandae mathematicae
container_volume 188
creator Simon, Thomas
Dulac, Guillaume
description We investigate the cumulative Tsallis entropy, an information measure recently introduced as a cumulative version of the classical Tsallis differential entropy, which is itself a generalization of the Boltzmann-Gibbs statistics. This functional is here considered as a perturbation of the expected mean residual life via some power weight function. This point of view leads to the introduction of the dual cumulative Tsallis entropy and of two families of coherent risk measures generalizing those built on mean residual life. We characterize the finiteness of the cumulative Tsallis entropy in terms of L p -spaces and show how they determine the underlying distribution. The range of the functional is exactly described under various constraints, with optimal bounds improving on all those previously available in the literature. Whereas the maximization of the Tsallis differential entropy gives rise to the classical q -Gaussian distribution which is a generalization of the Gaussian having a finite range or heavy tails, the maximization of the cumulative Tsallis entropy leads to an analogous perturbation of the Logistic distribution.
doi_str_mv 10.1007/s10440-023-00620-3
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04381909v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2889479513</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-c9505765c42aba6b2c3c9d86ef8d451507a278d160c9a1920a629b8adfe1f05a3</originalsourceid><addsrcrecordid>eNp9kE1LAzEURYMoWKt_wI0FVy6i7yWTr2UprRUK3dR1SDMZnTKdqclMwX_v1BHduXpwOffyOITcIjwigHpKCFkGFBinAJIB5WdkhEIxaoDLczIClIpqQHNJrlLaAQA3Uo7I3bqezLp9V7m2PIbJJrmqKtNkXrexOZQhXZOLwlUp3PzcMXldzDezJV2tn19m0xX1XPCWeiNAKCl8xtzWyS3z3Jtcy1DoPBMoQDmmdI4SvHFoGDjJzFa7vAhYgHB8TB6G3XdX2UMs9y5-2saVdjld2VMGGddowByxZ-8H9hCbjy6k1u6aLtb9e5ZpbTJlBPKeYgPlY5NSDMXvLII9SbODNNtLs9_S7KnEh1Lq4fotxL_pf1pfdH9r_g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2889479513</pqid></control><display><type>article</type><title>On Cumulative Tsallis Entropies</title><source>SpringerLink Journals - AutoHoldings</source><creator>Simon, Thomas ; Dulac, Guillaume</creator><creatorcontrib>Simon, Thomas ; Dulac, Guillaume</creatorcontrib><description>We investigate the cumulative Tsallis entropy, an information measure recently introduced as a cumulative version of the classical Tsallis differential entropy, which is itself a generalization of the Boltzmann-Gibbs statistics. This functional is here considered as a perturbation of the expected mean residual life via some power weight function. This point of view leads to the introduction of the dual cumulative Tsallis entropy and of two families of coherent risk measures generalizing those built on mean residual life. We characterize the finiteness of the cumulative Tsallis entropy in terms of L p -spaces and show how they determine the underlying distribution. The range of the functional is exactly described under various constraints, with optimal bounds improving on all those previously available in the literature. Whereas the maximization of the Tsallis differential entropy gives rise to the classical q -Gaussian distribution which is a generalization of the Gaussian having a finite range or heavy tails, the maximization of the cumulative Tsallis entropy leads to an analogous perturbation of the Logistic distribution.</description><identifier>ISSN: 0167-8019</identifier><identifier>EISSN: 1572-9036</identifier><identifier>DOI: 10.1007/s10440-023-00620-3</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Applications of Mathematics ; Calculus of Variations and Optimal Control; Optimization ; Computational Mathematics and Numerical Analysis ; Entropy ; Logit models ; Mathematics ; Mathematics and Statistics ; Maximization ; Normal distribution ; Optimization ; Partial Differential Equations ; Perturbation ; Probability Theory and Stochastic Processes ; Statistics ; Weighting functions</subject><ispartof>Acta applicandae mathematicae, 2023-12, Vol.188 (1), p.9, Article 9</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-c9505765c42aba6b2c3c9d86ef8d451507a278d160c9a1920a629b8adfe1f05a3</citedby><cites>FETCH-LOGICAL-c353t-c9505765c42aba6b2c3c9d86ef8d451507a278d160c9a1920a629b8adfe1f05a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10440-023-00620-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10440-023-00620-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04381909$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Simon, Thomas</creatorcontrib><creatorcontrib>Dulac, Guillaume</creatorcontrib><title>On Cumulative Tsallis Entropies</title><title>Acta applicandae mathematicae</title><addtitle>Acta Appl Math</addtitle><description>We investigate the cumulative Tsallis entropy, an information measure recently introduced as a cumulative version of the classical Tsallis differential entropy, which is itself a generalization of the Boltzmann-Gibbs statistics. This functional is here considered as a perturbation of the expected mean residual life via some power weight function. This point of view leads to the introduction of the dual cumulative Tsallis entropy and of two families of coherent risk measures generalizing those built on mean residual life. We characterize the finiteness of the cumulative Tsallis entropy in terms of L p -spaces and show how they determine the underlying distribution. The range of the functional is exactly described under various constraints, with optimal bounds improving on all those previously available in the literature. Whereas the maximization of the Tsallis differential entropy gives rise to the classical q -Gaussian distribution which is a generalization of the Gaussian having a finite range or heavy tails, the maximization of the cumulative Tsallis entropy leads to an analogous perturbation of the Logistic distribution.</description><subject>Applications of Mathematics</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Entropy</subject><subject>Logit models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Maximization</subject><subject>Normal distribution</subject><subject>Optimization</subject><subject>Partial Differential Equations</subject><subject>Perturbation</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Statistics</subject><subject>Weighting functions</subject><issn>0167-8019</issn><issn>1572-9036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE1LAzEURYMoWKt_wI0FVy6i7yWTr2UprRUK3dR1SDMZnTKdqclMwX_v1BHduXpwOffyOITcIjwigHpKCFkGFBinAJIB5WdkhEIxaoDLczIClIpqQHNJrlLaAQA3Uo7I3bqezLp9V7m2PIbJJrmqKtNkXrexOZQhXZOLwlUp3PzcMXldzDezJV2tn19m0xX1XPCWeiNAKCl8xtzWyS3z3Jtcy1DoPBMoQDmmdI4SvHFoGDjJzFa7vAhYgHB8TB6G3XdX2UMs9y5-2saVdjld2VMGGddowByxZ-8H9hCbjy6k1u6aLtb9e5ZpbTJlBPKeYgPlY5NSDMXvLII9SbODNNtLs9_S7KnEh1Lq4fotxL_pf1pfdH9r_g</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Simon, Thomas</creator><creator>Dulac, Guillaume</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>1XC</scope></search><sort><creationdate>20231201</creationdate><title>On Cumulative Tsallis Entropies</title><author>Simon, Thomas ; Dulac, Guillaume</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-c9505765c42aba6b2c3c9d86ef8d451507a278d160c9a1920a629b8adfe1f05a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applications of Mathematics</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Entropy</topic><topic>Logit models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Maximization</topic><topic>Normal distribution</topic><topic>Optimization</topic><topic>Partial Differential Equations</topic><topic>Perturbation</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Statistics</topic><topic>Weighting functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Simon, Thomas</creatorcontrib><creatorcontrib>Dulac, Guillaume</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Acta applicandae mathematicae</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Simon, Thomas</au><au>Dulac, Guillaume</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Cumulative Tsallis Entropies</atitle><jtitle>Acta applicandae mathematicae</jtitle><stitle>Acta Appl Math</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>188</volume><issue>1</issue><spage>9</spage><pages>9-</pages><artnum>9</artnum><issn>0167-8019</issn><eissn>1572-9036</eissn><abstract>We investigate the cumulative Tsallis entropy, an information measure recently introduced as a cumulative version of the classical Tsallis differential entropy, which is itself a generalization of the Boltzmann-Gibbs statistics. This functional is here considered as a perturbation of the expected mean residual life via some power weight function. This point of view leads to the introduction of the dual cumulative Tsallis entropy and of two families of coherent risk measures generalizing those built on mean residual life. We characterize the finiteness of the cumulative Tsallis entropy in terms of L p -spaces and show how they determine the underlying distribution. The range of the functional is exactly described under various constraints, with optimal bounds improving on all those previously available in the literature. Whereas the maximization of the Tsallis differential entropy gives rise to the classical q -Gaussian distribution which is a generalization of the Gaussian having a finite range or heavy tails, the maximization of the cumulative Tsallis entropy leads to an analogous perturbation of the Logistic distribution.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10440-023-00620-3</doi></addata></record>
fulltext fulltext
identifier ISSN: 0167-8019
ispartof Acta applicandae mathematicae, 2023-12, Vol.188 (1), p.9, Article 9
issn 0167-8019
1572-9036
language eng
recordid cdi_hal_primary_oai_HAL_hal_04381909v1
source SpringerLink Journals - AutoHoldings
subjects Applications of Mathematics
Calculus of Variations and Optimal Control
Optimization
Computational Mathematics and Numerical Analysis
Entropy
Logit models
Mathematics
Mathematics and Statistics
Maximization
Normal distribution
Optimization
Partial Differential Equations
Perturbation
Probability Theory and Stochastic Processes
Statistics
Weighting functions
title On Cumulative Tsallis Entropies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T10%3A49%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Cumulative%20Tsallis%20Entropies&rft.jtitle=Acta%20applicandae%20mathematicae&rft.au=Simon,%20Thomas&rft.date=2023-12-01&rft.volume=188&rft.issue=1&rft.spage=9&rft.pages=9-&rft.artnum=9&rft.issn=0167-8019&rft.eissn=1572-9036&rft_id=info:doi/10.1007/s10440-023-00620-3&rft_dat=%3Cproquest_hal_p%3E2889479513%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2889479513&rft_id=info:pmid/&rfr_iscdi=true