On Cumulative Tsallis Entropies
We investigate the cumulative Tsallis entropy, an information measure recently introduced as a cumulative version of the classical Tsallis differential entropy, which is itself a generalization of the Boltzmann-Gibbs statistics. This functional is here considered as a perturbation of the expected me...
Gespeichert in:
Veröffentlicht in: | Acta applicandae mathematicae 2023-12, Vol.188 (1), p.9, Article 9 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 9 |
container_title | Acta applicandae mathematicae |
container_volume | 188 |
creator | Simon, Thomas Dulac, Guillaume |
description | We investigate the cumulative Tsallis entropy, an information measure recently introduced as a cumulative version of the classical Tsallis differential entropy, which is itself a generalization of the Boltzmann-Gibbs statistics. This functional is here considered as a perturbation of the expected mean residual life via some power weight function. This point of view leads to the introduction of the dual cumulative Tsallis entropy and of two families of coherent risk measures generalizing those built on mean residual life. We characterize the finiteness of the cumulative Tsallis entropy in terms of
L
p
-spaces and show how they determine the underlying distribution. The range of the functional is exactly described under various constraints, with optimal bounds improving on all those previously available in the literature. Whereas the maximization of the Tsallis differential entropy gives rise to the classical
q
-Gaussian distribution which is a generalization of the Gaussian having a finite range or heavy tails, the maximization of the cumulative Tsallis entropy leads to an analogous perturbation of the Logistic distribution. |
doi_str_mv | 10.1007/s10440-023-00620-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04381909v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2889479513</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-c9505765c42aba6b2c3c9d86ef8d451507a278d160c9a1920a629b8adfe1f05a3</originalsourceid><addsrcrecordid>eNp9kE1LAzEURYMoWKt_wI0FVy6i7yWTr2UprRUK3dR1SDMZnTKdqclMwX_v1BHduXpwOffyOITcIjwigHpKCFkGFBinAJIB5WdkhEIxaoDLczIClIpqQHNJrlLaAQA3Uo7I3bqezLp9V7m2PIbJJrmqKtNkXrexOZQhXZOLwlUp3PzcMXldzDezJV2tn19m0xX1XPCWeiNAKCl8xtzWyS3z3Jtcy1DoPBMoQDmmdI4SvHFoGDjJzFa7vAhYgHB8TB6G3XdX2UMs9y5-2saVdjld2VMGGddowByxZ-8H9hCbjy6k1u6aLtb9e5ZpbTJlBPKeYgPlY5NSDMXvLII9SbODNNtLs9_S7KnEh1Lq4fotxL_pf1pfdH9r_g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2889479513</pqid></control><display><type>article</type><title>On Cumulative Tsallis Entropies</title><source>SpringerLink Journals - AutoHoldings</source><creator>Simon, Thomas ; Dulac, Guillaume</creator><creatorcontrib>Simon, Thomas ; Dulac, Guillaume</creatorcontrib><description>We investigate the cumulative Tsallis entropy, an information measure recently introduced as a cumulative version of the classical Tsallis differential entropy, which is itself a generalization of the Boltzmann-Gibbs statistics. This functional is here considered as a perturbation of the expected mean residual life via some power weight function. This point of view leads to the introduction of the dual cumulative Tsallis entropy and of two families of coherent risk measures generalizing those built on mean residual life. We characterize the finiteness of the cumulative Tsallis entropy in terms of
L
p
-spaces and show how they determine the underlying distribution. The range of the functional is exactly described under various constraints, with optimal bounds improving on all those previously available in the literature. Whereas the maximization of the Tsallis differential entropy gives rise to the classical
q
-Gaussian distribution which is a generalization of the Gaussian having a finite range or heavy tails, the maximization of the cumulative Tsallis entropy leads to an analogous perturbation of the Logistic distribution.</description><identifier>ISSN: 0167-8019</identifier><identifier>EISSN: 1572-9036</identifier><identifier>DOI: 10.1007/s10440-023-00620-3</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Applications of Mathematics ; Calculus of Variations and Optimal Control; Optimization ; Computational Mathematics and Numerical Analysis ; Entropy ; Logit models ; Mathematics ; Mathematics and Statistics ; Maximization ; Normal distribution ; Optimization ; Partial Differential Equations ; Perturbation ; Probability Theory and Stochastic Processes ; Statistics ; Weighting functions</subject><ispartof>Acta applicandae mathematicae, 2023-12, Vol.188 (1), p.9, Article 9</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-c9505765c42aba6b2c3c9d86ef8d451507a278d160c9a1920a629b8adfe1f05a3</citedby><cites>FETCH-LOGICAL-c353t-c9505765c42aba6b2c3c9d86ef8d451507a278d160c9a1920a629b8adfe1f05a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10440-023-00620-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10440-023-00620-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04381909$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Simon, Thomas</creatorcontrib><creatorcontrib>Dulac, Guillaume</creatorcontrib><title>On Cumulative Tsallis Entropies</title><title>Acta applicandae mathematicae</title><addtitle>Acta Appl Math</addtitle><description>We investigate the cumulative Tsallis entropy, an information measure recently introduced as a cumulative version of the classical Tsallis differential entropy, which is itself a generalization of the Boltzmann-Gibbs statistics. This functional is here considered as a perturbation of the expected mean residual life via some power weight function. This point of view leads to the introduction of the dual cumulative Tsallis entropy and of two families of coherent risk measures generalizing those built on mean residual life. We characterize the finiteness of the cumulative Tsallis entropy in terms of
L
p
-spaces and show how they determine the underlying distribution. The range of the functional is exactly described under various constraints, with optimal bounds improving on all those previously available in the literature. Whereas the maximization of the Tsallis differential entropy gives rise to the classical
q
-Gaussian distribution which is a generalization of the Gaussian having a finite range or heavy tails, the maximization of the cumulative Tsallis entropy leads to an analogous perturbation of the Logistic distribution.</description><subject>Applications of Mathematics</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Entropy</subject><subject>Logit models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Maximization</subject><subject>Normal distribution</subject><subject>Optimization</subject><subject>Partial Differential Equations</subject><subject>Perturbation</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Statistics</subject><subject>Weighting functions</subject><issn>0167-8019</issn><issn>1572-9036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE1LAzEURYMoWKt_wI0FVy6i7yWTr2UprRUK3dR1SDMZnTKdqclMwX_v1BHduXpwOffyOITcIjwigHpKCFkGFBinAJIB5WdkhEIxaoDLczIClIpqQHNJrlLaAQA3Uo7I3bqezLp9V7m2PIbJJrmqKtNkXrexOZQhXZOLwlUp3PzcMXldzDezJV2tn19m0xX1XPCWeiNAKCl8xtzWyS3z3Jtcy1DoPBMoQDmmdI4SvHFoGDjJzFa7vAhYgHB8TB6G3XdX2UMs9y5-2saVdjld2VMGGddowByxZ-8H9hCbjy6k1u6aLtb9e5ZpbTJlBPKeYgPlY5NSDMXvLII9SbODNNtLs9_S7KnEh1Lq4fotxL_pf1pfdH9r_g</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Simon, Thomas</creator><creator>Dulac, Guillaume</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>1XC</scope></search><sort><creationdate>20231201</creationdate><title>On Cumulative Tsallis Entropies</title><author>Simon, Thomas ; Dulac, Guillaume</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-c9505765c42aba6b2c3c9d86ef8d451507a278d160c9a1920a629b8adfe1f05a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applications of Mathematics</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Entropy</topic><topic>Logit models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Maximization</topic><topic>Normal distribution</topic><topic>Optimization</topic><topic>Partial Differential Equations</topic><topic>Perturbation</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Statistics</topic><topic>Weighting functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Simon, Thomas</creatorcontrib><creatorcontrib>Dulac, Guillaume</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Acta applicandae mathematicae</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Simon, Thomas</au><au>Dulac, Guillaume</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Cumulative Tsallis Entropies</atitle><jtitle>Acta applicandae mathematicae</jtitle><stitle>Acta Appl Math</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>188</volume><issue>1</issue><spage>9</spage><pages>9-</pages><artnum>9</artnum><issn>0167-8019</issn><eissn>1572-9036</eissn><abstract>We investigate the cumulative Tsallis entropy, an information measure recently introduced as a cumulative version of the classical Tsallis differential entropy, which is itself a generalization of the Boltzmann-Gibbs statistics. This functional is here considered as a perturbation of the expected mean residual life via some power weight function. This point of view leads to the introduction of the dual cumulative Tsallis entropy and of two families of coherent risk measures generalizing those built on mean residual life. We characterize the finiteness of the cumulative Tsallis entropy in terms of
L
p
-spaces and show how they determine the underlying distribution. The range of the functional is exactly described under various constraints, with optimal bounds improving on all those previously available in the literature. Whereas the maximization of the Tsallis differential entropy gives rise to the classical
q
-Gaussian distribution which is a generalization of the Gaussian having a finite range or heavy tails, the maximization of the cumulative Tsallis entropy leads to an analogous perturbation of the Logistic distribution.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10440-023-00620-3</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-8019 |
ispartof | Acta applicandae mathematicae, 2023-12, Vol.188 (1), p.9, Article 9 |
issn | 0167-8019 1572-9036 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04381909v1 |
source | SpringerLink Journals - AutoHoldings |
subjects | Applications of Mathematics Calculus of Variations and Optimal Control Optimization Computational Mathematics and Numerical Analysis Entropy Logit models Mathematics Mathematics and Statistics Maximization Normal distribution Optimization Partial Differential Equations Perturbation Probability Theory and Stochastic Processes Statistics Weighting functions |
title | On Cumulative Tsallis Entropies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T10%3A49%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Cumulative%20Tsallis%20Entropies&rft.jtitle=Acta%20applicandae%20mathematicae&rft.au=Simon,%20Thomas&rft.date=2023-12-01&rft.volume=188&rft.issue=1&rft.spage=9&rft.pages=9-&rft.artnum=9&rft.issn=0167-8019&rft.eissn=1572-9036&rft_id=info:doi/10.1007/s10440-023-00620-3&rft_dat=%3Cproquest_hal_p%3E2889479513%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2889479513&rft_id=info:pmid/&rfr_iscdi=true |