Space-borne Bose–Einstein condensation for precision interferometry
Owing to the low-gravity conditions in space, space-borne laboratories enable experiments with extended free-fall times. Because Bose–Einstein condensates have an extremely low expansion energy, space-borne atom interferometers based on Bose–Einstein condensation have the potential to have much grea...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2018-10, Vol.562 (7727), p.391-395 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 395 |
---|---|
container_issue | 7727 |
container_start_page | 391 |
container_title | Nature (London) |
container_volume | 562 |
creator | Becker, Dennis Lachmann, Maike D. Seidel, Stephan T. Ahlers, Holger Dinkelaker, Aline N. Grosse, Jens Hellmig, Ortwin Müntinga, Hauke Schkolnik, Vladimir Wendrich, Thijs Wenzlawski, André Weps, Benjamin Corgier, Robin Franz, Tobias Gaaloul, Naceur Herr, Waldemar Lüdtke, Daniel Popp, Manuel Amri, Sirine Duncker, Hannes Erbe, Maik Kohfeldt, Anja Kubelka-Lange, André Braxmaier, Claus Charron, Eric Ertmer, Wolfgang Krutzik, Markus Lämmerzahl, Claus Peters, Achim Schleich, Wolfgang P. Sengstock, Klaus Walser, Reinhold Wicht, Andreas Windpassinger, Patrick Rasel, Ernst M. |
description | Owing to the low-gravity conditions in space, space-borne laboratories enable experiments with extended free-fall times. Because Bose–Einstein condensates have an extremely low expansion energy, space-borne atom interferometers based on Bose–Einstein condensation have the potential to have much greater sensitivity to inertial forces than do similar ground-based interferometers. On 23 January 2017, as part of the sounding-rocket mission MAIUS-1, we created Bose–Einstein condensates in space and conducted 110 experiments central to matter-wave interferometry, including laser cooling and trapping of atoms in the presence of the large accelerations experienced during launch. Here we report on experiments conducted during the six minutes of in-space flight in which we studied the phase transition from a thermal ensemble to a Bose–Einstein condensate and the collective dynamics of the resulting condensate. Our results provide insights into conducting cold-atom experiments in space, such as precision interferometry, and pave the way to miniaturizing cold-atom and photon-based quantum information concepts for satellite-based implementation. In addition, space-borne Bose–Einstein condensation opens up the possibility of quantum gas experiments in low-gravity conditions
1
,
2
.
A Bose–Einstein condensate is created in space that has sufficient stability to enable its characteristic dynamics to be studied. |
doi_str_mv | 10.1038/s41586-018-0605-1 |
format | Article |
fullrecord | <record><control><sourceid>gale_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04380145v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A573039692</galeid><sourcerecordid>A573039692</sourcerecordid><originalsourceid>FETCH-LOGICAL-c638t-1aa0da34abb253d7bf1011342efe6e66b4c3cb696fef0ed766ec17318ee1049c3</originalsourceid><addsrcrecordid>eNp10s1u1DAUBWALgehQeAA2aAQbukjxjX-SLIdqoJVGQqKwthznZnCV2KmdILrjHXhDngRHUwYGDfIisv35Sjk6hDwHeg6UlW8iB1HKjEKZUUlFBg_IAnghMy7L4iFZUJqnm5LJE_IkxhtKqYCCPyYnjDLGRCEXZH09aINZ7YPD5Vsf8ef3H2vr4ojWLY13DbqoR-vdsvVhOQQ0Ns4760YMLQbf4xjunpJHre4iPrv_npLP79afLi6zzYf3VxerTWYkK8cMtKaNZlzXdS5YU9QtUADGc2xRopQ1N8zUspItthSbQko0UDAoEYHyyrBTcrab-0V3agi21-FOeW3V5Wqj5jPKWUmBi6-Q7OudHYK_nTCOqrfRYNdph36KKoc8FxUwIRJ99Q-98VNw6U-SYnkOIFLee7XVHSrrWj8GbeahaiWKFGklqzyp7IjaosOgO--wten4wL884s1gb9Xf6PwISqvB3pqjU88OHiQz4rdxq6cY1dX1x0MLO2uCjzFgu08WqJp7pnY9U6lnau6ZmsN9cZ_YVPfY7F_8LlYC-Q7EdOW2GP5E-v-pvwA6D9kc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2132211510</pqid></control><display><type>article</type><title>Space-borne Bose–Einstein condensation for precision interferometry</title><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Becker, Dennis ; Lachmann, Maike D. ; Seidel, Stephan T. ; Ahlers, Holger ; Dinkelaker, Aline N. ; Grosse, Jens ; Hellmig, Ortwin ; Müntinga, Hauke ; Schkolnik, Vladimir ; Wendrich, Thijs ; Wenzlawski, André ; Weps, Benjamin ; Corgier, Robin ; Franz, Tobias ; Gaaloul, Naceur ; Herr, Waldemar ; Lüdtke, Daniel ; Popp, Manuel ; Amri, Sirine ; Duncker, Hannes ; Erbe, Maik ; Kohfeldt, Anja ; Kubelka-Lange, André ; Braxmaier, Claus ; Charron, Eric ; Ertmer, Wolfgang ; Krutzik, Markus ; Lämmerzahl, Claus ; Peters, Achim ; Schleich, Wolfgang P. ; Sengstock, Klaus ; Walser, Reinhold ; Wicht, Andreas ; Windpassinger, Patrick ; Rasel, Ernst M.</creator><creatorcontrib>Becker, Dennis ; Lachmann, Maike D. ; Seidel, Stephan T. ; Ahlers, Holger ; Dinkelaker, Aline N. ; Grosse, Jens ; Hellmig, Ortwin ; Müntinga, Hauke ; Schkolnik, Vladimir ; Wendrich, Thijs ; Wenzlawski, André ; Weps, Benjamin ; Corgier, Robin ; Franz, Tobias ; Gaaloul, Naceur ; Herr, Waldemar ; Lüdtke, Daniel ; Popp, Manuel ; Amri, Sirine ; Duncker, Hannes ; Erbe, Maik ; Kohfeldt, Anja ; Kubelka-Lange, André ; Braxmaier, Claus ; Charron, Eric ; Ertmer, Wolfgang ; Krutzik, Markus ; Lämmerzahl, Claus ; Peters, Achim ; Schleich, Wolfgang P. ; Sengstock, Klaus ; Walser, Reinhold ; Wicht, Andreas ; Windpassinger, Patrick ; Rasel, Ernst M.</creatorcontrib><description>Owing to the low-gravity conditions in space, space-borne laboratories enable experiments with extended free-fall times. Because Bose–Einstein condensates have an extremely low expansion energy, space-borne atom interferometers based on Bose–Einstein condensation have the potential to have much greater sensitivity to inertial forces than do similar ground-based interferometers. On 23 January 2017, as part of the sounding-rocket mission MAIUS-1, we created Bose–Einstein condensates in space and conducted 110 experiments central to matter-wave interferometry, including laser cooling and trapping of atoms in the presence of the large accelerations experienced during launch. Here we report on experiments conducted during the six minutes of in-space flight in which we studied the phase transition from a thermal ensemble to a Bose–Einstein condensate and the collective dynamics of the resulting condensate. Our results provide insights into conducting cold-atom experiments in space, such as precision interferometry, and pave the way to miniaturizing cold-atom and photon-based quantum information concepts for satellite-based implementation. In addition, space-borne Bose–Einstein condensation opens up the possibility of quantum gas experiments in low-gravity conditions
1
,
2
.
A Bose–Einstein condensate is created in space that has sufficient stability to enable its characteristic dynamics to be studied.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-018-0605-1</identifier><identifier>PMID: 30333576</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/125 ; 142/126 ; 639/766/119/2791 ; 639/766/36/1125 ; 639/766/483/1255 ; 639/766/483/3924 ; Atoms ; Bose-Einstein condensates ; Cold ; Condensates ; Condensation ; Experiments ; Gravitation ; Gravitational waves ; Gravity ; Humanities and Social Sciences ; Inertial sensing devices ; Interferometers ; Interferometry ; Laboratories ; Laboratory tests ; Laser cooling ; Lasers ; Letter ; Magnetic fields ; Miniaturization ; multidisciplinary ; Nonlinear Sciences ; Phase transitions ; Physics research ; Quantum phenomena ; Science ; Science (multidisciplinary) ; Space flight</subject><ispartof>Nature (London), 2018-10, Vol.562 (7727), p.391-395</ispartof><rights>Springer Nature Limited 2018</rights><rights>COPYRIGHT 2018 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Oct 18, 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c638t-1aa0da34abb253d7bf1011342efe6e66b4c3cb696fef0ed766ec17318ee1049c3</citedby><cites>FETCH-LOGICAL-c638t-1aa0da34abb253d7bf1011342efe6e66b4c3cb696fef0ed766ec17318ee1049c3</cites><orcidid>0000-0003-1660-6368</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-018-0605-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-018-0605-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30333576$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04380145$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Becker, Dennis</creatorcontrib><creatorcontrib>Lachmann, Maike D.</creatorcontrib><creatorcontrib>Seidel, Stephan T.</creatorcontrib><creatorcontrib>Ahlers, Holger</creatorcontrib><creatorcontrib>Dinkelaker, Aline N.</creatorcontrib><creatorcontrib>Grosse, Jens</creatorcontrib><creatorcontrib>Hellmig, Ortwin</creatorcontrib><creatorcontrib>Müntinga, Hauke</creatorcontrib><creatorcontrib>Schkolnik, Vladimir</creatorcontrib><creatorcontrib>Wendrich, Thijs</creatorcontrib><creatorcontrib>Wenzlawski, André</creatorcontrib><creatorcontrib>Weps, Benjamin</creatorcontrib><creatorcontrib>Corgier, Robin</creatorcontrib><creatorcontrib>Franz, Tobias</creatorcontrib><creatorcontrib>Gaaloul, Naceur</creatorcontrib><creatorcontrib>Herr, Waldemar</creatorcontrib><creatorcontrib>Lüdtke, Daniel</creatorcontrib><creatorcontrib>Popp, Manuel</creatorcontrib><creatorcontrib>Amri, Sirine</creatorcontrib><creatorcontrib>Duncker, Hannes</creatorcontrib><creatorcontrib>Erbe, Maik</creatorcontrib><creatorcontrib>Kohfeldt, Anja</creatorcontrib><creatorcontrib>Kubelka-Lange, André</creatorcontrib><creatorcontrib>Braxmaier, Claus</creatorcontrib><creatorcontrib>Charron, Eric</creatorcontrib><creatorcontrib>Ertmer, Wolfgang</creatorcontrib><creatorcontrib>Krutzik, Markus</creatorcontrib><creatorcontrib>Lämmerzahl, Claus</creatorcontrib><creatorcontrib>Peters, Achim</creatorcontrib><creatorcontrib>Schleich, Wolfgang P.</creatorcontrib><creatorcontrib>Sengstock, Klaus</creatorcontrib><creatorcontrib>Walser, Reinhold</creatorcontrib><creatorcontrib>Wicht, Andreas</creatorcontrib><creatorcontrib>Windpassinger, Patrick</creatorcontrib><creatorcontrib>Rasel, Ernst M.</creatorcontrib><title>Space-borne Bose–Einstein condensation for precision interferometry</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Owing to the low-gravity conditions in space, space-borne laboratories enable experiments with extended free-fall times. Because Bose–Einstein condensates have an extremely low expansion energy, space-borne atom interferometers based on Bose–Einstein condensation have the potential to have much greater sensitivity to inertial forces than do similar ground-based interferometers. On 23 January 2017, as part of the sounding-rocket mission MAIUS-1, we created Bose–Einstein condensates in space and conducted 110 experiments central to matter-wave interferometry, including laser cooling and trapping of atoms in the presence of the large accelerations experienced during launch. Here we report on experiments conducted during the six minutes of in-space flight in which we studied the phase transition from a thermal ensemble to a Bose–Einstein condensate and the collective dynamics of the resulting condensate. Our results provide insights into conducting cold-atom experiments in space, such as precision interferometry, and pave the way to miniaturizing cold-atom and photon-based quantum information concepts for satellite-based implementation. In addition, space-borne Bose–Einstein condensation opens up the possibility of quantum gas experiments in low-gravity conditions
1
,
2
.
A Bose–Einstein condensate is created in space that has sufficient stability to enable its characteristic dynamics to be studied.</description><subject>140/125</subject><subject>142/126</subject><subject>639/766/119/2791</subject><subject>639/766/36/1125</subject><subject>639/766/483/1255</subject><subject>639/766/483/3924</subject><subject>Atoms</subject><subject>Bose-Einstein condensates</subject><subject>Cold</subject><subject>Condensates</subject><subject>Condensation</subject><subject>Experiments</subject><subject>Gravitation</subject><subject>Gravitational waves</subject><subject>Gravity</subject><subject>Humanities and Social Sciences</subject><subject>Inertial sensing devices</subject><subject>Interferometers</subject><subject>Interferometry</subject><subject>Laboratories</subject><subject>Laboratory tests</subject><subject>Laser cooling</subject><subject>Lasers</subject><subject>Letter</subject><subject>Magnetic fields</subject><subject>Miniaturization</subject><subject>multidisciplinary</subject><subject>Nonlinear Sciences</subject><subject>Phase transitions</subject><subject>Physics research</subject><subject>Quantum phenomena</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Space flight</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp10s1u1DAUBWALgehQeAA2aAQbukjxjX-SLIdqoJVGQqKwthznZnCV2KmdILrjHXhDngRHUwYGDfIisv35Sjk6hDwHeg6UlW8iB1HKjEKZUUlFBg_IAnghMy7L4iFZUJqnm5LJE_IkxhtKqYCCPyYnjDLGRCEXZH09aINZ7YPD5Vsf8ef3H2vr4ojWLY13DbqoR-vdsvVhOQQ0Ns4760YMLQbf4xjunpJHre4iPrv_npLP79afLi6zzYf3VxerTWYkK8cMtKaNZlzXdS5YU9QtUADGc2xRopQ1N8zUspItthSbQko0UDAoEYHyyrBTcrab-0V3agi21-FOeW3V5Wqj5jPKWUmBi6-Q7OudHYK_nTCOqrfRYNdph36KKoc8FxUwIRJ99Q-98VNw6U-SYnkOIFLee7XVHSrrWj8GbeahaiWKFGklqzyp7IjaosOgO--wten4wL884s1gb9Xf6PwISqvB3pqjU88OHiQz4rdxq6cY1dX1x0MLO2uCjzFgu08WqJp7pnY9U6lnau6ZmsN9cZ_YVPfY7F_8LlYC-Q7EdOW2GP5E-v-pvwA6D9kc</recordid><startdate>201810</startdate><enddate>201810</enddate><creator>Becker, Dennis</creator><creator>Lachmann, Maike D.</creator><creator>Seidel, Stephan T.</creator><creator>Ahlers, Holger</creator><creator>Dinkelaker, Aline N.</creator><creator>Grosse, Jens</creator><creator>Hellmig, Ortwin</creator><creator>Müntinga, Hauke</creator><creator>Schkolnik, Vladimir</creator><creator>Wendrich, Thijs</creator><creator>Wenzlawski, André</creator><creator>Weps, Benjamin</creator><creator>Corgier, Robin</creator><creator>Franz, Tobias</creator><creator>Gaaloul, Naceur</creator><creator>Herr, Waldemar</creator><creator>Lüdtke, Daniel</creator><creator>Popp, Manuel</creator><creator>Amri, Sirine</creator><creator>Duncker, Hannes</creator><creator>Erbe, Maik</creator><creator>Kohfeldt, Anja</creator><creator>Kubelka-Lange, André</creator><creator>Braxmaier, Claus</creator><creator>Charron, Eric</creator><creator>Ertmer, Wolfgang</creator><creator>Krutzik, Markus</creator><creator>Lämmerzahl, Claus</creator><creator>Peters, Achim</creator><creator>Schleich, Wolfgang P.</creator><creator>Sengstock, Klaus</creator><creator>Walser, Reinhold</creator><creator>Wicht, Andreas</creator><creator>Windpassinger, Patrick</creator><creator>Rasel, Ernst M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-1660-6368</orcidid></search><sort><creationdate>201810</creationdate><title>Space-borne Bose–Einstein condensation for precision interferometry</title><author>Becker, Dennis ; Lachmann, Maike D. ; Seidel, Stephan T. ; Ahlers, Holger ; Dinkelaker, Aline N. ; Grosse, Jens ; Hellmig, Ortwin ; Müntinga, Hauke ; Schkolnik, Vladimir ; Wendrich, Thijs ; Wenzlawski, André ; Weps, Benjamin ; Corgier, Robin ; Franz, Tobias ; Gaaloul, Naceur ; Herr, Waldemar ; Lüdtke, Daniel ; Popp, Manuel ; Amri, Sirine ; Duncker, Hannes ; Erbe, Maik ; Kohfeldt, Anja ; Kubelka-Lange, André ; Braxmaier, Claus ; Charron, Eric ; Ertmer, Wolfgang ; Krutzik, Markus ; Lämmerzahl, Claus ; Peters, Achim ; Schleich, Wolfgang P. ; Sengstock, Klaus ; Walser, Reinhold ; Wicht, Andreas ; Windpassinger, Patrick ; Rasel, Ernst M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c638t-1aa0da34abb253d7bf1011342efe6e66b4c3cb696fef0ed766ec17318ee1049c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>140/125</topic><topic>142/126</topic><topic>639/766/119/2791</topic><topic>639/766/36/1125</topic><topic>639/766/483/1255</topic><topic>639/766/483/3924</topic><topic>Atoms</topic><topic>Bose-Einstein condensates</topic><topic>Cold</topic><topic>Condensates</topic><topic>Condensation</topic><topic>Experiments</topic><topic>Gravitation</topic><topic>Gravitational waves</topic><topic>Gravity</topic><topic>Humanities and Social Sciences</topic><topic>Inertial sensing devices</topic><topic>Interferometers</topic><topic>Interferometry</topic><topic>Laboratories</topic><topic>Laboratory tests</topic><topic>Laser cooling</topic><topic>Lasers</topic><topic>Letter</topic><topic>Magnetic fields</topic><topic>Miniaturization</topic><topic>multidisciplinary</topic><topic>Nonlinear Sciences</topic><topic>Phase transitions</topic><topic>Physics research</topic><topic>Quantum phenomena</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Space flight</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Becker, Dennis</creatorcontrib><creatorcontrib>Lachmann, Maike D.</creatorcontrib><creatorcontrib>Seidel, Stephan T.</creatorcontrib><creatorcontrib>Ahlers, Holger</creatorcontrib><creatorcontrib>Dinkelaker, Aline N.</creatorcontrib><creatorcontrib>Grosse, Jens</creatorcontrib><creatorcontrib>Hellmig, Ortwin</creatorcontrib><creatorcontrib>Müntinga, Hauke</creatorcontrib><creatorcontrib>Schkolnik, Vladimir</creatorcontrib><creatorcontrib>Wendrich, Thijs</creatorcontrib><creatorcontrib>Wenzlawski, André</creatorcontrib><creatorcontrib>Weps, Benjamin</creatorcontrib><creatorcontrib>Corgier, Robin</creatorcontrib><creatorcontrib>Franz, Tobias</creatorcontrib><creatorcontrib>Gaaloul, Naceur</creatorcontrib><creatorcontrib>Herr, Waldemar</creatorcontrib><creatorcontrib>Lüdtke, Daniel</creatorcontrib><creatorcontrib>Popp, Manuel</creatorcontrib><creatorcontrib>Amri, Sirine</creatorcontrib><creatorcontrib>Duncker, Hannes</creatorcontrib><creatorcontrib>Erbe, Maik</creatorcontrib><creatorcontrib>Kohfeldt, Anja</creatorcontrib><creatorcontrib>Kubelka-Lange, André</creatorcontrib><creatorcontrib>Braxmaier, Claus</creatorcontrib><creatorcontrib>Charron, Eric</creatorcontrib><creatorcontrib>Ertmer, Wolfgang</creatorcontrib><creatorcontrib>Krutzik, Markus</creatorcontrib><creatorcontrib>Lämmerzahl, Claus</creatorcontrib><creatorcontrib>Peters, Achim</creatorcontrib><creatorcontrib>Schleich, Wolfgang P.</creatorcontrib><creatorcontrib>Sengstock, Klaus</creatorcontrib><creatorcontrib>Walser, Reinhold</creatorcontrib><creatorcontrib>Wicht, Andreas</creatorcontrib><creatorcontrib>Windpassinger, Patrick</creatorcontrib><creatorcontrib>Rasel, Ernst M.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Becker, Dennis</au><au>Lachmann, Maike D.</au><au>Seidel, Stephan T.</au><au>Ahlers, Holger</au><au>Dinkelaker, Aline N.</au><au>Grosse, Jens</au><au>Hellmig, Ortwin</au><au>Müntinga, Hauke</au><au>Schkolnik, Vladimir</au><au>Wendrich, Thijs</au><au>Wenzlawski, André</au><au>Weps, Benjamin</au><au>Corgier, Robin</au><au>Franz, Tobias</au><au>Gaaloul, Naceur</au><au>Herr, Waldemar</au><au>Lüdtke, Daniel</au><au>Popp, Manuel</au><au>Amri, Sirine</au><au>Duncker, Hannes</au><au>Erbe, Maik</au><au>Kohfeldt, Anja</au><au>Kubelka-Lange, André</au><au>Braxmaier, Claus</au><au>Charron, Eric</au><au>Ertmer, Wolfgang</au><au>Krutzik, Markus</au><au>Lämmerzahl, Claus</au><au>Peters, Achim</au><au>Schleich, Wolfgang P.</au><au>Sengstock, Klaus</au><au>Walser, Reinhold</au><au>Wicht, Andreas</au><au>Windpassinger, Patrick</au><au>Rasel, Ernst M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Space-borne Bose–Einstein condensation for precision interferometry</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2018-10</date><risdate>2018</risdate><volume>562</volume><issue>7727</issue><spage>391</spage><epage>395</epage><pages>391-395</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>Owing to the low-gravity conditions in space, space-borne laboratories enable experiments with extended free-fall times. Because Bose–Einstein condensates have an extremely low expansion energy, space-borne atom interferometers based on Bose–Einstein condensation have the potential to have much greater sensitivity to inertial forces than do similar ground-based interferometers. On 23 January 2017, as part of the sounding-rocket mission MAIUS-1, we created Bose–Einstein condensates in space and conducted 110 experiments central to matter-wave interferometry, including laser cooling and trapping of atoms in the presence of the large accelerations experienced during launch. Here we report on experiments conducted during the six minutes of in-space flight in which we studied the phase transition from a thermal ensemble to a Bose–Einstein condensate and the collective dynamics of the resulting condensate. Our results provide insights into conducting cold-atom experiments in space, such as precision interferometry, and pave the way to miniaturizing cold-atom and photon-based quantum information concepts for satellite-based implementation. In addition, space-borne Bose–Einstein condensation opens up the possibility of quantum gas experiments in low-gravity conditions
1
,
2
.
A Bose–Einstein condensate is created in space that has sufficient stability to enable its characteristic dynamics to be studied.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30333576</pmid><doi>10.1038/s41586-018-0605-1</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-1660-6368</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2018-10, Vol.562 (7727), p.391-395 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04380145v1 |
source | Nature Journals Online; SpringerLink Journals - AutoHoldings |
subjects | 140/125 142/126 639/766/119/2791 639/766/36/1125 639/766/483/1255 639/766/483/3924 Atoms Bose-Einstein condensates Cold Condensates Condensation Experiments Gravitation Gravitational waves Gravity Humanities and Social Sciences Inertial sensing devices Interferometers Interferometry Laboratories Laboratory tests Laser cooling Lasers Letter Magnetic fields Miniaturization multidisciplinary Nonlinear Sciences Phase transitions Physics research Quantum phenomena Science Science (multidisciplinary) Space flight |
title | Space-borne Bose–Einstein condensation for precision interferometry |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T16%3A07%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Space-borne%20Bose%E2%80%93Einstein%20condensation%20for%20precision%20interferometry&rft.jtitle=Nature%20(London)&rft.au=Becker,%20Dennis&rft.date=2018-10&rft.volume=562&rft.issue=7727&rft.spage=391&rft.epage=395&rft.pages=391-395&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-018-0605-1&rft_dat=%3Cgale_hal_p%3EA573039692%3C/gale_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2132211510&rft_id=info:pmid/30333576&rft_galeid=A573039692&rfr_iscdi=true |