Space-borne Bose–Einstein condensation for precision interferometry

Owing to the low-gravity conditions in space, space-borne laboratories enable experiments with extended free-fall times. Because Bose–Einstein condensates have an extremely low expansion energy, space-borne atom interferometers based on Bose–Einstein condensation have the potential to have much grea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2018-10, Vol.562 (7727), p.391-395
Hauptverfasser: Becker, Dennis, Lachmann, Maike D., Seidel, Stephan T., Ahlers, Holger, Dinkelaker, Aline N., Grosse, Jens, Hellmig, Ortwin, Müntinga, Hauke, Schkolnik, Vladimir, Wendrich, Thijs, Wenzlawski, André, Weps, Benjamin, Corgier, Robin, Franz, Tobias, Gaaloul, Naceur, Herr, Waldemar, Lüdtke, Daniel, Popp, Manuel, Amri, Sirine, Duncker, Hannes, Erbe, Maik, Kohfeldt, Anja, Kubelka-Lange, André, Braxmaier, Claus, Charron, Eric, Ertmer, Wolfgang, Krutzik, Markus, Lämmerzahl, Claus, Peters, Achim, Schleich, Wolfgang P., Sengstock, Klaus, Walser, Reinhold, Wicht, Andreas, Windpassinger, Patrick, Rasel, Ernst M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 395
container_issue 7727
container_start_page 391
container_title Nature (London)
container_volume 562
creator Becker, Dennis
Lachmann, Maike D.
Seidel, Stephan T.
Ahlers, Holger
Dinkelaker, Aline N.
Grosse, Jens
Hellmig, Ortwin
Müntinga, Hauke
Schkolnik, Vladimir
Wendrich, Thijs
Wenzlawski, André
Weps, Benjamin
Corgier, Robin
Franz, Tobias
Gaaloul, Naceur
Herr, Waldemar
Lüdtke, Daniel
Popp, Manuel
Amri, Sirine
Duncker, Hannes
Erbe, Maik
Kohfeldt, Anja
Kubelka-Lange, André
Braxmaier, Claus
Charron, Eric
Ertmer, Wolfgang
Krutzik, Markus
Lämmerzahl, Claus
Peters, Achim
Schleich, Wolfgang P.
Sengstock, Klaus
Walser, Reinhold
Wicht, Andreas
Windpassinger, Patrick
Rasel, Ernst M.
description Owing to the low-gravity conditions in space, space-borne laboratories enable experiments with extended free-fall times. Because Bose–Einstein condensates have an extremely low expansion energy, space-borne atom interferometers based on Bose–Einstein condensation have the potential to have much greater sensitivity to inertial forces than do similar ground-based interferometers. On 23 January 2017, as part of the sounding-rocket mission MAIUS-1, we created Bose–Einstein condensates in space and conducted 110 experiments central to matter-wave interferometry, including laser cooling and trapping of atoms in the presence of the large accelerations experienced during launch. Here we report on experiments conducted during the six minutes of in-space flight in which we studied the phase transition from a thermal ensemble to a Bose–Einstein condensate and the collective dynamics of the resulting condensate. Our results provide insights into conducting cold-atom experiments in space, such as precision interferometry, and pave the way to miniaturizing cold-atom and photon-based quantum information concepts for satellite-based implementation. In addition, space-borne Bose–Einstein condensation opens up the possibility of quantum gas experiments in low-gravity conditions 1 , 2 . A Bose–Einstein condensate is created in space that has sufficient stability to enable its characteristic dynamics to be studied.
doi_str_mv 10.1038/s41586-018-0605-1
format Article
fullrecord <record><control><sourceid>gale_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04380145v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A573039692</galeid><sourcerecordid>A573039692</sourcerecordid><originalsourceid>FETCH-LOGICAL-c638t-1aa0da34abb253d7bf1011342efe6e66b4c3cb696fef0ed766ec17318ee1049c3</originalsourceid><addsrcrecordid>eNp10s1u1DAUBWALgehQeAA2aAQbukjxjX-SLIdqoJVGQqKwthznZnCV2KmdILrjHXhDngRHUwYGDfIisv35Sjk6hDwHeg6UlW8iB1HKjEKZUUlFBg_IAnghMy7L4iFZUJqnm5LJE_IkxhtKqYCCPyYnjDLGRCEXZH09aINZ7YPD5Vsf8ef3H2vr4ojWLY13DbqoR-vdsvVhOQQ0Ns4760YMLQbf4xjunpJHre4iPrv_npLP79afLi6zzYf3VxerTWYkK8cMtKaNZlzXdS5YU9QtUADGc2xRopQ1N8zUspItthSbQko0UDAoEYHyyrBTcrab-0V3agi21-FOeW3V5Wqj5jPKWUmBi6-Q7OudHYK_nTCOqrfRYNdph36KKoc8FxUwIRJ99Q-98VNw6U-SYnkOIFLee7XVHSrrWj8GbeahaiWKFGklqzyp7IjaosOgO--wten4wL884s1gb9Xf6PwISqvB3pqjU88OHiQz4rdxq6cY1dX1x0MLO2uCjzFgu08WqJp7pnY9U6lnau6ZmsN9cZ_YVPfY7F_8LlYC-Q7EdOW2GP5E-v-pvwA6D9kc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2132211510</pqid></control><display><type>article</type><title>Space-borne Bose–Einstein condensation for precision interferometry</title><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Becker, Dennis ; Lachmann, Maike D. ; Seidel, Stephan T. ; Ahlers, Holger ; Dinkelaker, Aline N. ; Grosse, Jens ; Hellmig, Ortwin ; Müntinga, Hauke ; Schkolnik, Vladimir ; Wendrich, Thijs ; Wenzlawski, André ; Weps, Benjamin ; Corgier, Robin ; Franz, Tobias ; Gaaloul, Naceur ; Herr, Waldemar ; Lüdtke, Daniel ; Popp, Manuel ; Amri, Sirine ; Duncker, Hannes ; Erbe, Maik ; Kohfeldt, Anja ; Kubelka-Lange, André ; Braxmaier, Claus ; Charron, Eric ; Ertmer, Wolfgang ; Krutzik, Markus ; Lämmerzahl, Claus ; Peters, Achim ; Schleich, Wolfgang P. ; Sengstock, Klaus ; Walser, Reinhold ; Wicht, Andreas ; Windpassinger, Patrick ; Rasel, Ernst M.</creator><creatorcontrib>Becker, Dennis ; Lachmann, Maike D. ; Seidel, Stephan T. ; Ahlers, Holger ; Dinkelaker, Aline N. ; Grosse, Jens ; Hellmig, Ortwin ; Müntinga, Hauke ; Schkolnik, Vladimir ; Wendrich, Thijs ; Wenzlawski, André ; Weps, Benjamin ; Corgier, Robin ; Franz, Tobias ; Gaaloul, Naceur ; Herr, Waldemar ; Lüdtke, Daniel ; Popp, Manuel ; Amri, Sirine ; Duncker, Hannes ; Erbe, Maik ; Kohfeldt, Anja ; Kubelka-Lange, André ; Braxmaier, Claus ; Charron, Eric ; Ertmer, Wolfgang ; Krutzik, Markus ; Lämmerzahl, Claus ; Peters, Achim ; Schleich, Wolfgang P. ; Sengstock, Klaus ; Walser, Reinhold ; Wicht, Andreas ; Windpassinger, Patrick ; Rasel, Ernst M.</creatorcontrib><description>Owing to the low-gravity conditions in space, space-borne laboratories enable experiments with extended free-fall times. Because Bose–Einstein condensates have an extremely low expansion energy, space-borne atom interferometers based on Bose–Einstein condensation have the potential to have much greater sensitivity to inertial forces than do similar ground-based interferometers. On 23 January 2017, as part of the sounding-rocket mission MAIUS-1, we created Bose–Einstein condensates in space and conducted 110 experiments central to matter-wave interferometry, including laser cooling and trapping of atoms in the presence of the large accelerations experienced during launch. Here we report on experiments conducted during the six minutes of in-space flight in which we studied the phase transition from a thermal ensemble to a Bose–Einstein condensate and the collective dynamics of the resulting condensate. Our results provide insights into conducting cold-atom experiments in space, such as precision interferometry, and pave the way to miniaturizing cold-atom and photon-based quantum information concepts for satellite-based implementation. In addition, space-borne Bose–Einstein condensation opens up the possibility of quantum gas experiments in low-gravity conditions 1 , 2 . A Bose–Einstein condensate is created in space that has sufficient stability to enable its characteristic dynamics to be studied.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-018-0605-1</identifier><identifier>PMID: 30333576</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/125 ; 142/126 ; 639/766/119/2791 ; 639/766/36/1125 ; 639/766/483/1255 ; 639/766/483/3924 ; Atoms ; Bose-Einstein condensates ; Cold ; Condensates ; Condensation ; Experiments ; Gravitation ; Gravitational waves ; Gravity ; Humanities and Social Sciences ; Inertial sensing devices ; Interferometers ; Interferometry ; Laboratories ; Laboratory tests ; Laser cooling ; Lasers ; Letter ; Magnetic fields ; Miniaturization ; multidisciplinary ; Nonlinear Sciences ; Phase transitions ; Physics research ; Quantum phenomena ; Science ; Science (multidisciplinary) ; Space flight</subject><ispartof>Nature (London), 2018-10, Vol.562 (7727), p.391-395</ispartof><rights>Springer Nature Limited 2018</rights><rights>COPYRIGHT 2018 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Oct 18, 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c638t-1aa0da34abb253d7bf1011342efe6e66b4c3cb696fef0ed766ec17318ee1049c3</citedby><cites>FETCH-LOGICAL-c638t-1aa0da34abb253d7bf1011342efe6e66b4c3cb696fef0ed766ec17318ee1049c3</cites><orcidid>0000-0003-1660-6368</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-018-0605-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-018-0605-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30333576$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04380145$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Becker, Dennis</creatorcontrib><creatorcontrib>Lachmann, Maike D.</creatorcontrib><creatorcontrib>Seidel, Stephan T.</creatorcontrib><creatorcontrib>Ahlers, Holger</creatorcontrib><creatorcontrib>Dinkelaker, Aline N.</creatorcontrib><creatorcontrib>Grosse, Jens</creatorcontrib><creatorcontrib>Hellmig, Ortwin</creatorcontrib><creatorcontrib>Müntinga, Hauke</creatorcontrib><creatorcontrib>Schkolnik, Vladimir</creatorcontrib><creatorcontrib>Wendrich, Thijs</creatorcontrib><creatorcontrib>Wenzlawski, André</creatorcontrib><creatorcontrib>Weps, Benjamin</creatorcontrib><creatorcontrib>Corgier, Robin</creatorcontrib><creatorcontrib>Franz, Tobias</creatorcontrib><creatorcontrib>Gaaloul, Naceur</creatorcontrib><creatorcontrib>Herr, Waldemar</creatorcontrib><creatorcontrib>Lüdtke, Daniel</creatorcontrib><creatorcontrib>Popp, Manuel</creatorcontrib><creatorcontrib>Amri, Sirine</creatorcontrib><creatorcontrib>Duncker, Hannes</creatorcontrib><creatorcontrib>Erbe, Maik</creatorcontrib><creatorcontrib>Kohfeldt, Anja</creatorcontrib><creatorcontrib>Kubelka-Lange, André</creatorcontrib><creatorcontrib>Braxmaier, Claus</creatorcontrib><creatorcontrib>Charron, Eric</creatorcontrib><creatorcontrib>Ertmer, Wolfgang</creatorcontrib><creatorcontrib>Krutzik, Markus</creatorcontrib><creatorcontrib>Lämmerzahl, Claus</creatorcontrib><creatorcontrib>Peters, Achim</creatorcontrib><creatorcontrib>Schleich, Wolfgang P.</creatorcontrib><creatorcontrib>Sengstock, Klaus</creatorcontrib><creatorcontrib>Walser, Reinhold</creatorcontrib><creatorcontrib>Wicht, Andreas</creatorcontrib><creatorcontrib>Windpassinger, Patrick</creatorcontrib><creatorcontrib>Rasel, Ernst M.</creatorcontrib><title>Space-borne Bose–Einstein condensation for precision interferometry</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Owing to the low-gravity conditions in space, space-borne laboratories enable experiments with extended free-fall times. Because Bose–Einstein condensates have an extremely low expansion energy, space-borne atom interferometers based on Bose–Einstein condensation have the potential to have much greater sensitivity to inertial forces than do similar ground-based interferometers. On 23 January 2017, as part of the sounding-rocket mission MAIUS-1, we created Bose–Einstein condensates in space and conducted 110 experiments central to matter-wave interferometry, including laser cooling and trapping of atoms in the presence of the large accelerations experienced during launch. Here we report on experiments conducted during the six minutes of in-space flight in which we studied the phase transition from a thermal ensemble to a Bose–Einstein condensate and the collective dynamics of the resulting condensate. Our results provide insights into conducting cold-atom experiments in space, such as precision interferometry, and pave the way to miniaturizing cold-atom and photon-based quantum information concepts for satellite-based implementation. In addition, space-borne Bose–Einstein condensation opens up the possibility of quantum gas experiments in low-gravity conditions 1 , 2 . A Bose–Einstein condensate is created in space that has sufficient stability to enable its characteristic dynamics to be studied.</description><subject>140/125</subject><subject>142/126</subject><subject>639/766/119/2791</subject><subject>639/766/36/1125</subject><subject>639/766/483/1255</subject><subject>639/766/483/3924</subject><subject>Atoms</subject><subject>Bose-Einstein condensates</subject><subject>Cold</subject><subject>Condensates</subject><subject>Condensation</subject><subject>Experiments</subject><subject>Gravitation</subject><subject>Gravitational waves</subject><subject>Gravity</subject><subject>Humanities and Social Sciences</subject><subject>Inertial sensing devices</subject><subject>Interferometers</subject><subject>Interferometry</subject><subject>Laboratories</subject><subject>Laboratory tests</subject><subject>Laser cooling</subject><subject>Lasers</subject><subject>Letter</subject><subject>Magnetic fields</subject><subject>Miniaturization</subject><subject>multidisciplinary</subject><subject>Nonlinear Sciences</subject><subject>Phase transitions</subject><subject>Physics research</subject><subject>Quantum phenomena</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Space flight</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp10s1u1DAUBWALgehQeAA2aAQbukjxjX-SLIdqoJVGQqKwthznZnCV2KmdILrjHXhDngRHUwYGDfIisv35Sjk6hDwHeg6UlW8iB1HKjEKZUUlFBg_IAnghMy7L4iFZUJqnm5LJE_IkxhtKqYCCPyYnjDLGRCEXZH09aINZ7YPD5Vsf8ef3H2vr4ojWLY13DbqoR-vdsvVhOQQ0Ns4760YMLQbf4xjunpJHre4iPrv_npLP79afLi6zzYf3VxerTWYkK8cMtKaNZlzXdS5YU9QtUADGc2xRopQ1N8zUspItthSbQko0UDAoEYHyyrBTcrab-0V3agi21-FOeW3V5Wqj5jPKWUmBi6-Q7OudHYK_nTCOqrfRYNdph36KKoc8FxUwIRJ99Q-98VNw6U-SYnkOIFLee7XVHSrrWj8GbeahaiWKFGklqzyp7IjaosOgO--wten4wL884s1gb9Xf6PwISqvB3pqjU88OHiQz4rdxq6cY1dX1x0MLO2uCjzFgu08WqJp7pnY9U6lnau6ZmsN9cZ_YVPfY7F_8LlYC-Q7EdOW2GP5E-v-pvwA6D9kc</recordid><startdate>201810</startdate><enddate>201810</enddate><creator>Becker, Dennis</creator><creator>Lachmann, Maike D.</creator><creator>Seidel, Stephan T.</creator><creator>Ahlers, Holger</creator><creator>Dinkelaker, Aline N.</creator><creator>Grosse, Jens</creator><creator>Hellmig, Ortwin</creator><creator>Müntinga, Hauke</creator><creator>Schkolnik, Vladimir</creator><creator>Wendrich, Thijs</creator><creator>Wenzlawski, André</creator><creator>Weps, Benjamin</creator><creator>Corgier, Robin</creator><creator>Franz, Tobias</creator><creator>Gaaloul, Naceur</creator><creator>Herr, Waldemar</creator><creator>Lüdtke, Daniel</creator><creator>Popp, Manuel</creator><creator>Amri, Sirine</creator><creator>Duncker, Hannes</creator><creator>Erbe, Maik</creator><creator>Kohfeldt, Anja</creator><creator>Kubelka-Lange, André</creator><creator>Braxmaier, Claus</creator><creator>Charron, Eric</creator><creator>Ertmer, Wolfgang</creator><creator>Krutzik, Markus</creator><creator>Lämmerzahl, Claus</creator><creator>Peters, Achim</creator><creator>Schleich, Wolfgang P.</creator><creator>Sengstock, Klaus</creator><creator>Walser, Reinhold</creator><creator>Wicht, Andreas</creator><creator>Windpassinger, Patrick</creator><creator>Rasel, Ernst M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-1660-6368</orcidid></search><sort><creationdate>201810</creationdate><title>Space-borne Bose–Einstein condensation for precision interferometry</title><author>Becker, Dennis ; Lachmann, Maike D. ; Seidel, Stephan T. ; Ahlers, Holger ; Dinkelaker, Aline N. ; Grosse, Jens ; Hellmig, Ortwin ; Müntinga, Hauke ; Schkolnik, Vladimir ; Wendrich, Thijs ; Wenzlawski, André ; Weps, Benjamin ; Corgier, Robin ; Franz, Tobias ; Gaaloul, Naceur ; Herr, Waldemar ; Lüdtke, Daniel ; Popp, Manuel ; Amri, Sirine ; Duncker, Hannes ; Erbe, Maik ; Kohfeldt, Anja ; Kubelka-Lange, André ; Braxmaier, Claus ; Charron, Eric ; Ertmer, Wolfgang ; Krutzik, Markus ; Lämmerzahl, Claus ; Peters, Achim ; Schleich, Wolfgang P. ; Sengstock, Klaus ; Walser, Reinhold ; Wicht, Andreas ; Windpassinger, Patrick ; Rasel, Ernst M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c638t-1aa0da34abb253d7bf1011342efe6e66b4c3cb696fef0ed766ec17318ee1049c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>140/125</topic><topic>142/126</topic><topic>639/766/119/2791</topic><topic>639/766/36/1125</topic><topic>639/766/483/1255</topic><topic>639/766/483/3924</topic><topic>Atoms</topic><topic>Bose-Einstein condensates</topic><topic>Cold</topic><topic>Condensates</topic><topic>Condensation</topic><topic>Experiments</topic><topic>Gravitation</topic><topic>Gravitational waves</topic><topic>Gravity</topic><topic>Humanities and Social Sciences</topic><topic>Inertial sensing devices</topic><topic>Interferometers</topic><topic>Interferometry</topic><topic>Laboratories</topic><topic>Laboratory tests</topic><topic>Laser cooling</topic><topic>Lasers</topic><topic>Letter</topic><topic>Magnetic fields</topic><topic>Miniaturization</topic><topic>multidisciplinary</topic><topic>Nonlinear Sciences</topic><topic>Phase transitions</topic><topic>Physics research</topic><topic>Quantum phenomena</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Space flight</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Becker, Dennis</creatorcontrib><creatorcontrib>Lachmann, Maike D.</creatorcontrib><creatorcontrib>Seidel, Stephan T.</creatorcontrib><creatorcontrib>Ahlers, Holger</creatorcontrib><creatorcontrib>Dinkelaker, Aline N.</creatorcontrib><creatorcontrib>Grosse, Jens</creatorcontrib><creatorcontrib>Hellmig, Ortwin</creatorcontrib><creatorcontrib>Müntinga, Hauke</creatorcontrib><creatorcontrib>Schkolnik, Vladimir</creatorcontrib><creatorcontrib>Wendrich, Thijs</creatorcontrib><creatorcontrib>Wenzlawski, André</creatorcontrib><creatorcontrib>Weps, Benjamin</creatorcontrib><creatorcontrib>Corgier, Robin</creatorcontrib><creatorcontrib>Franz, Tobias</creatorcontrib><creatorcontrib>Gaaloul, Naceur</creatorcontrib><creatorcontrib>Herr, Waldemar</creatorcontrib><creatorcontrib>Lüdtke, Daniel</creatorcontrib><creatorcontrib>Popp, Manuel</creatorcontrib><creatorcontrib>Amri, Sirine</creatorcontrib><creatorcontrib>Duncker, Hannes</creatorcontrib><creatorcontrib>Erbe, Maik</creatorcontrib><creatorcontrib>Kohfeldt, Anja</creatorcontrib><creatorcontrib>Kubelka-Lange, André</creatorcontrib><creatorcontrib>Braxmaier, Claus</creatorcontrib><creatorcontrib>Charron, Eric</creatorcontrib><creatorcontrib>Ertmer, Wolfgang</creatorcontrib><creatorcontrib>Krutzik, Markus</creatorcontrib><creatorcontrib>Lämmerzahl, Claus</creatorcontrib><creatorcontrib>Peters, Achim</creatorcontrib><creatorcontrib>Schleich, Wolfgang P.</creatorcontrib><creatorcontrib>Sengstock, Klaus</creatorcontrib><creatorcontrib>Walser, Reinhold</creatorcontrib><creatorcontrib>Wicht, Andreas</creatorcontrib><creatorcontrib>Windpassinger, Patrick</creatorcontrib><creatorcontrib>Rasel, Ernst M.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Becker, Dennis</au><au>Lachmann, Maike D.</au><au>Seidel, Stephan T.</au><au>Ahlers, Holger</au><au>Dinkelaker, Aline N.</au><au>Grosse, Jens</au><au>Hellmig, Ortwin</au><au>Müntinga, Hauke</au><au>Schkolnik, Vladimir</au><au>Wendrich, Thijs</au><au>Wenzlawski, André</au><au>Weps, Benjamin</au><au>Corgier, Robin</au><au>Franz, Tobias</au><au>Gaaloul, Naceur</au><au>Herr, Waldemar</au><au>Lüdtke, Daniel</au><au>Popp, Manuel</au><au>Amri, Sirine</au><au>Duncker, Hannes</au><au>Erbe, Maik</au><au>Kohfeldt, Anja</au><au>Kubelka-Lange, André</au><au>Braxmaier, Claus</au><au>Charron, Eric</au><au>Ertmer, Wolfgang</au><au>Krutzik, Markus</au><au>Lämmerzahl, Claus</au><au>Peters, Achim</au><au>Schleich, Wolfgang P.</au><au>Sengstock, Klaus</au><au>Walser, Reinhold</au><au>Wicht, Andreas</au><au>Windpassinger, Patrick</au><au>Rasel, Ernst M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Space-borne Bose–Einstein condensation for precision interferometry</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2018-10</date><risdate>2018</risdate><volume>562</volume><issue>7727</issue><spage>391</spage><epage>395</epage><pages>391-395</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>Owing to the low-gravity conditions in space, space-borne laboratories enable experiments with extended free-fall times. Because Bose–Einstein condensates have an extremely low expansion energy, space-borne atom interferometers based on Bose–Einstein condensation have the potential to have much greater sensitivity to inertial forces than do similar ground-based interferometers. On 23 January 2017, as part of the sounding-rocket mission MAIUS-1, we created Bose–Einstein condensates in space and conducted 110 experiments central to matter-wave interferometry, including laser cooling and trapping of atoms in the presence of the large accelerations experienced during launch. Here we report on experiments conducted during the six minutes of in-space flight in which we studied the phase transition from a thermal ensemble to a Bose–Einstein condensate and the collective dynamics of the resulting condensate. Our results provide insights into conducting cold-atom experiments in space, such as precision interferometry, and pave the way to miniaturizing cold-atom and photon-based quantum information concepts for satellite-based implementation. In addition, space-borne Bose–Einstein condensation opens up the possibility of quantum gas experiments in low-gravity conditions 1 , 2 . A Bose–Einstein condensate is created in space that has sufficient stability to enable its characteristic dynamics to be studied.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30333576</pmid><doi>10.1038/s41586-018-0605-1</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-1660-6368</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2018-10, Vol.562 (7727), p.391-395
issn 0028-0836
1476-4687
language eng
recordid cdi_hal_primary_oai_HAL_hal_04380145v1
source Nature Journals Online; SpringerLink Journals - AutoHoldings
subjects 140/125
142/126
639/766/119/2791
639/766/36/1125
639/766/483/1255
639/766/483/3924
Atoms
Bose-Einstein condensates
Cold
Condensates
Condensation
Experiments
Gravitation
Gravitational waves
Gravity
Humanities and Social Sciences
Inertial sensing devices
Interferometers
Interferometry
Laboratories
Laboratory tests
Laser cooling
Lasers
Letter
Magnetic fields
Miniaturization
multidisciplinary
Nonlinear Sciences
Phase transitions
Physics research
Quantum phenomena
Science
Science (multidisciplinary)
Space flight
title Space-borne Bose–Einstein condensation for precision interferometry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T16%3A07%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Space-borne%20Bose%E2%80%93Einstein%20condensation%20for%20precision%20interferometry&rft.jtitle=Nature%20(London)&rft.au=Becker,%20Dennis&rft.date=2018-10&rft.volume=562&rft.issue=7727&rft.spage=391&rft.epage=395&rft.pages=391-395&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-018-0605-1&rft_dat=%3Cgale_hal_p%3EA573039692%3C/gale_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2132211510&rft_id=info:pmid/30333576&rft_galeid=A573039692&rfr_iscdi=true