Interaction between forced and natural convection in a thin cylindrical fluid layer at low Prandtl number
Motivated by nuclear safety issues, we study the heat transfers in a thin cylindrical fluid layer with imposed fluxes at the bottom and top surfaces (not necessarily equal) and a fixed temperature on the sides. We combine direct numerical simulations and a theoretical approach to derive scaling laws...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2023-12, Vol.977, Article A26 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Journal of fluid mechanics |
container_volume | 977 |
creator | Rein, F. Carénini, L. Fichot, F. Favier, B. Le Bars, M. |
description | Motivated by nuclear safety issues, we study the heat transfers in a thin cylindrical fluid layer with imposed fluxes at the bottom and top surfaces (not necessarily equal) and a fixed temperature on the sides. We combine direct numerical simulations and a theoretical approach to derive scaling laws for the mean temperature and for the temperature difference between the top and bottom of the system. We find two asymptotic scaling laws depending on the flux ratio between the upper and lower boundaries. The first one is controlled by heat transfer to the side, for which we recover scaling laws characteristic of natural convection (Batchelor, Q. Appl. Maths, vol. 12, 1954, pp. 209–233). The second one is driven by vertical heat transfers analogous to Rayleigh–Bénard convection (Grossmann & Lohse, J. Fluid Mech., vol. 407, 2000, pp. 27–56). We show that the system is inherently inhomogeneous, and that the heat transfer results from a superposition of both asymptotic regimes. Keeping in mind nuclear safety models, we also derive a one-dimensional model of the radial temperature profile based on a detailed analysis of the flow structure, hence providing a way to relate this profile to the imposed boundary conditions. |
doi_str_mv | 10.1017/jfm.2023.922 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04380002v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2023_922</cupid><sourcerecordid>2902792086</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-99bedfe26f0bcfff24add18a40ed8a810e52d5ea68ebf3f50e374004996ef6bc3</originalsourceid><addsrcrecordid>eNptkMFKAzEQQIMoWKs3PyDgSXDrJLvd3RyLqBUKetBzyCYTm7LN1my2pX9vSkUvngaGN4_hEXLNYMKAVfcru55w4PlEcH5CRqwoRVaVxfSUjAA4zxjjcE4u-n4FwHIQ1Yi4Fx8xKB1d52mDcYfoqe2CRkOVN9SrOATVUt35LR4p56micZmG3rfOm-B0Amw7OENbtcdAVaRtt6NvIRliS_2wbjBckjOr2h6vfuaYfDw9vj_Ms8Xr88vDbJFpLvKYCdGgschLC4221vJCGcNqVQCaWtUMcMrNFFVZY2NzOwXMqwKgEKJEWzY6H5Pbo3epWrkJbq3CXnbKyflsIQ87KPIaUo8tS-zNkd2E7mvAPspVNwSf3pNcAK8Eh7pM1N2R0qHr-4D2V8tAHsLLFF4ewssUPuGTH1ytm-DMJ_5Z_z34BnbUhpQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2902792086</pqid></control><display><type>article</type><title>Interaction between forced and natural convection in a thin cylindrical fluid layer at low Prandtl number</title><source>Cambridge University Press Journals Complete</source><creator>Rein, F. ; Carénini, L. ; Fichot, F. ; Favier, B. ; Le Bars, M.</creator><creatorcontrib>Rein, F. ; Carénini, L. ; Fichot, F. ; Favier, B. ; Le Bars, M.</creatorcontrib><description>Motivated by nuclear safety issues, we study the heat transfers in a thin cylindrical fluid layer with imposed fluxes at the bottom and top surfaces (not necessarily equal) and a fixed temperature on the sides. We combine direct numerical simulations and a theoretical approach to derive scaling laws for the mean temperature and for the temperature difference between the top and bottom of the system. We find two asymptotic scaling laws depending on the flux ratio between the upper and lower boundaries. The first one is controlled by heat transfer to the side, for which we recover scaling laws characteristic of natural convection (Batchelor, Q. Appl. Maths, vol. 12, 1954, pp. 209–233). The second one is driven by vertical heat transfers analogous to Rayleigh–Bénard convection (Grossmann & Lohse, J. Fluid Mech., vol. 407, 2000, pp. 27–56). We show that the system is inherently inhomogeneous, and that the heat transfer results from a superposition of both asymptotic regimes. Keeping in mind nuclear safety models, we also derive a one-dimensional model of the radial temperature profile based on a detailed analysis of the flow structure, hence providing a way to relate this profile to the imposed boundary conditions.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2023.922</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Asymptotic properties ; Boundary conditions ; Convection ; Cooling ; Direct numerical simulation ; Flow structures ; Fluid Dynamics ; Free convection ; Heat transfer ; JFM Papers ; Mathematical models ; Nuclear accidents & safety ; Nuclear power plants ; Nuclear reactors ; Nuclear safety ; One dimensional models ; Physics ; Prandtl number ; Rayleigh-Benard convection ; Scaling ; Scaling laws ; Temperature differences ; Temperature gradients ; Temperature profile ; Temperature profiles</subject><ispartof>Journal of fluid mechanics, 2023-12, Vol.977, Article A26</ispartof><rights>The Author(s), 2023. Published by Cambridge University Press</rights><rights>Attribution - NonCommercial - NoDerivatives</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c293t-99bedfe26f0bcfff24add18a40ed8a810e52d5ea68ebf3f50e374004996ef6bc3</cites><orcidid>0009-0007-8090-3726 ; 0009-0006-2060-7362 ; 0000-0002-4884-6190 ; 0000-0002-1184-2989 ; 0000-0002-2134-3948</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112023009229/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,230,314,776,780,881,27901,27902,55603</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04380002$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Rein, F.</creatorcontrib><creatorcontrib>Carénini, L.</creatorcontrib><creatorcontrib>Fichot, F.</creatorcontrib><creatorcontrib>Favier, B.</creatorcontrib><creatorcontrib>Le Bars, M.</creatorcontrib><title>Interaction between forced and natural convection in a thin cylindrical fluid layer at low Prandtl number</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>Motivated by nuclear safety issues, we study the heat transfers in a thin cylindrical fluid layer with imposed fluxes at the bottom and top surfaces (not necessarily equal) and a fixed temperature on the sides. We combine direct numerical simulations and a theoretical approach to derive scaling laws for the mean temperature and for the temperature difference between the top and bottom of the system. We find two asymptotic scaling laws depending on the flux ratio between the upper and lower boundaries. The first one is controlled by heat transfer to the side, for which we recover scaling laws characteristic of natural convection (Batchelor, Q. Appl. Maths, vol. 12, 1954, pp. 209–233). The second one is driven by vertical heat transfers analogous to Rayleigh–Bénard convection (Grossmann & Lohse, J. Fluid Mech., vol. 407, 2000, pp. 27–56). We show that the system is inherently inhomogeneous, and that the heat transfer results from a superposition of both asymptotic regimes. Keeping in mind nuclear safety models, we also derive a one-dimensional model of the radial temperature profile based on a detailed analysis of the flow structure, hence providing a way to relate this profile to the imposed boundary conditions.</description><subject>Asymptotic properties</subject><subject>Boundary conditions</subject><subject>Convection</subject><subject>Cooling</subject><subject>Direct numerical simulation</subject><subject>Flow structures</subject><subject>Fluid Dynamics</subject><subject>Free convection</subject><subject>Heat transfer</subject><subject>JFM Papers</subject><subject>Mathematical models</subject><subject>Nuclear accidents & safety</subject><subject>Nuclear power plants</subject><subject>Nuclear reactors</subject><subject>Nuclear safety</subject><subject>One dimensional models</subject><subject>Physics</subject><subject>Prandtl number</subject><subject>Rayleigh-Benard convection</subject><subject>Scaling</subject><subject>Scaling laws</subject><subject>Temperature differences</subject><subject>Temperature gradients</subject><subject>Temperature profile</subject><subject>Temperature profiles</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkMFKAzEQQIMoWKs3PyDgSXDrJLvd3RyLqBUKetBzyCYTm7LN1my2pX9vSkUvngaGN4_hEXLNYMKAVfcru55w4PlEcH5CRqwoRVaVxfSUjAA4zxjjcE4u-n4FwHIQ1Yi4Fx8xKB1d52mDcYfoqe2CRkOVN9SrOATVUt35LR4p56micZmG3rfOm-B0Amw7OENbtcdAVaRtt6NvIRliS_2wbjBckjOr2h6vfuaYfDw9vj_Ms8Xr88vDbJFpLvKYCdGgschLC4221vJCGcNqVQCaWtUMcMrNFFVZY2NzOwXMqwKgEKJEWzY6H5Pbo3epWrkJbq3CXnbKyflsIQ87KPIaUo8tS-zNkd2E7mvAPspVNwSf3pNcAK8Eh7pM1N2R0qHr-4D2V8tAHsLLFF4ewssUPuGTH1ytm-DMJ_5Z_z34BnbUhpQ</recordid><startdate>20231218</startdate><enddate>20231218</enddate><creator>Rein, F.</creator><creator>Carénini, L.</creator><creator>Fichot, F.</creator><creator>Favier, B.</creator><creator>Le Bars, M.</creator><general>Cambridge University Press</general><general>Cambridge University Press (CUP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0009-0007-8090-3726</orcidid><orcidid>https://orcid.org/0009-0006-2060-7362</orcidid><orcidid>https://orcid.org/0000-0002-4884-6190</orcidid><orcidid>https://orcid.org/0000-0002-1184-2989</orcidid><orcidid>https://orcid.org/0000-0002-2134-3948</orcidid></search><sort><creationdate>20231218</creationdate><title>Interaction between forced and natural convection in a thin cylindrical fluid layer at low Prandtl number</title><author>Rein, F. ; Carénini, L. ; Fichot, F. ; Favier, B. ; Le Bars, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-99bedfe26f0bcfff24add18a40ed8a810e52d5ea68ebf3f50e374004996ef6bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Asymptotic properties</topic><topic>Boundary conditions</topic><topic>Convection</topic><topic>Cooling</topic><topic>Direct numerical simulation</topic><topic>Flow structures</topic><topic>Fluid Dynamics</topic><topic>Free convection</topic><topic>Heat transfer</topic><topic>JFM Papers</topic><topic>Mathematical models</topic><topic>Nuclear accidents & safety</topic><topic>Nuclear power plants</topic><topic>Nuclear reactors</topic><topic>Nuclear safety</topic><topic>One dimensional models</topic><topic>Physics</topic><topic>Prandtl number</topic><topic>Rayleigh-Benard convection</topic><topic>Scaling</topic><topic>Scaling laws</topic><topic>Temperature differences</topic><topic>Temperature gradients</topic><topic>Temperature profile</topic><topic>Temperature profiles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rein, F.</creatorcontrib><creatorcontrib>Carénini, L.</creatorcontrib><creatorcontrib>Fichot, F.</creatorcontrib><creatorcontrib>Favier, B.</creatorcontrib><creatorcontrib>Le Bars, M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rein, F.</au><au>Carénini, L.</au><au>Fichot, F.</au><au>Favier, B.</au><au>Le Bars, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interaction between forced and natural convection in a thin cylindrical fluid layer at low Prandtl number</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2023-12-18</date><risdate>2023</risdate><volume>977</volume><artnum>A26</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>Motivated by nuclear safety issues, we study the heat transfers in a thin cylindrical fluid layer with imposed fluxes at the bottom and top surfaces (not necessarily equal) and a fixed temperature on the sides. We combine direct numerical simulations and a theoretical approach to derive scaling laws for the mean temperature and for the temperature difference between the top and bottom of the system. We find two asymptotic scaling laws depending on the flux ratio between the upper and lower boundaries. The first one is controlled by heat transfer to the side, for which we recover scaling laws characteristic of natural convection (Batchelor, Q. Appl. Maths, vol. 12, 1954, pp. 209–233). The second one is driven by vertical heat transfers analogous to Rayleigh–Bénard convection (Grossmann & Lohse, J. Fluid Mech., vol. 407, 2000, pp. 27–56). We show that the system is inherently inhomogeneous, and that the heat transfer results from a superposition of both asymptotic regimes. Keeping in mind nuclear safety models, we also derive a one-dimensional model of the radial temperature profile based on a detailed analysis of the flow structure, hence providing a way to relate this profile to the imposed boundary conditions.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2023.922</doi><tpages>27</tpages><orcidid>https://orcid.org/0009-0007-8090-3726</orcidid><orcidid>https://orcid.org/0009-0006-2060-7362</orcidid><orcidid>https://orcid.org/0000-0002-4884-6190</orcidid><orcidid>https://orcid.org/0000-0002-1184-2989</orcidid><orcidid>https://orcid.org/0000-0002-2134-3948</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2023-12, Vol.977, Article A26 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04380002v1 |
source | Cambridge University Press Journals Complete |
subjects | Asymptotic properties Boundary conditions Convection Cooling Direct numerical simulation Flow structures Fluid Dynamics Free convection Heat transfer JFM Papers Mathematical models Nuclear accidents & safety Nuclear power plants Nuclear reactors Nuclear safety One dimensional models Physics Prandtl number Rayleigh-Benard convection Scaling Scaling laws Temperature differences Temperature gradients Temperature profile Temperature profiles |
title | Interaction between forced and natural convection in a thin cylindrical fluid layer at low Prandtl number |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T16%3A05%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interaction%20between%20forced%20and%20natural%20convection%20in%20a%20thin%20cylindrical%20fluid%20layer%20at%20low%20Prandtl%20number&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Rein,%20F.&rft.date=2023-12-18&rft.volume=977&rft.artnum=A26&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2023.922&rft_dat=%3Cproquest_hal_p%3E2902792086%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2902792086&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2023_922&rfr_iscdi=true |