Finte element modeling of the behavior of polymethyl-methacrylate (PMMA) during high pressure torsion process

This work tackles crack propagation mechanisms of styrene butadiene and natural rubbers, both subject to cyclic loading under a positive load ratio. The experimental evidence is based on pure shear loading of notched specimens supported by SEM analysis of fracture surfaces. Relationship between crac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Array (New York) 2020-03, Vol.14 (52), p.181-196
Hauptverfasser: Hamdi, Adel, Boulenouar, Abdelkader, Benseddiq, Noureddine, Guessasma, Sofiane
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 196
container_issue 52
container_start_page 181
container_title Array (New York)
container_volume 14
creator Hamdi, Adel
Boulenouar, Abdelkader
Benseddiq, Noureddine
Guessasma, Sofiane
description This work tackles crack propagation mechanisms of styrene butadiene and natural rubbers, both subject to cyclic loading under a positive load ratio. The experimental evidence is based on pure shear loading of notched specimens supported by SEM analysis of fracture surfaces. Relationship between crack growth rate and tearing energy is revisited. The experimental results show that the fatigue behaviour of studied vulcanisates can be clearly separated in the power-law regime. Furthermore, the reported results from the literature extend this statement to any load condition. Fracture surface observations reveal also differences in energy dissipation mechanisms inferred to structural mutations in the case of natural rubber. Alternation of rough and smooth fracture surfaces associated with change in crack growth rate is more likely to occur for styrene butadiene rubber. All observations suggest that crack branching is a secondary ranked dissipation mechanism for the studied materials compared to crack deviation.
doi_str_mv 10.1177/1464420719846579
format Article
fullrecord <record><control><sourceid>hal</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04377103v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_04377103v1</sourcerecordid><originalsourceid>FETCH-hal_primary_oai_HAL_hal_04377103v13</originalsourceid><addsrcrecordid>eNqVizFrwzAUhEVpoKHN3lFjM7h9z5aseAylIUMCHbobJXmJVCTLSErA_742dOja6e4-7mPsGeEVUak3FLUQJShsVqKWqrlj81I2UADI-v5Pf2CLlL4BoJSIKFdz5je2y8TJkacucx9O5Gx34eHMsyF-IKNvNsRp98ENnrIZXDGFPsbB6dF9-dzv10t-usZJNPZieB8ppWsknkNMNnQjCMcRPbHZWbtEi998ZMvNx9f7tjDatX20XsehDdq22_WunRiISimE6obVf74_iYBUjQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Finte element modeling of the behavior of polymethyl-methacrylate (PMMA) during high pressure torsion process</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Hamdi, Adel ; Boulenouar, Abdelkader ; Benseddiq, Noureddine ; Guessasma, Sofiane</creator><creatorcontrib>Hamdi, Adel ; Boulenouar, Abdelkader ; Benseddiq, Noureddine ; Guessasma, Sofiane</creatorcontrib><description>This work tackles crack propagation mechanisms of styrene butadiene and natural rubbers, both subject to cyclic loading under a positive load ratio. The experimental evidence is based on pure shear loading of notched specimens supported by SEM analysis of fracture surfaces. Relationship between crack growth rate and tearing energy is revisited. The experimental results show that the fatigue behaviour of studied vulcanisates can be clearly separated in the power-law regime. Furthermore, the reported results from the literature extend this statement to any load condition. Fracture surface observations reveal also differences in energy dissipation mechanisms inferred to structural mutations in the case of natural rubber. Alternation of rough and smooth fracture surfaces associated with change in crack growth rate is more likely to occur for styrene butadiene rubber. All observations suggest that crack branching is a secondary ranked dissipation mechanism for the studied materials compared to crack deviation.</description><identifier>ISSN: 2590-0056</identifier><identifier>EISSN: 2590-0056</identifier><identifier>DOI: 10.1177/1464420719846579</identifier><language>eng</language><publisher>Elsevier</publisher><subject>Physics</subject><ispartof>Array (New York), 2020-03, Vol.14 (52), p.181-196</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-6806-9694 ; 0000-0001-6806-9694</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,860,881,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04377103$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Hamdi, Adel</creatorcontrib><creatorcontrib>Boulenouar, Abdelkader</creatorcontrib><creatorcontrib>Benseddiq, Noureddine</creatorcontrib><creatorcontrib>Guessasma, Sofiane</creatorcontrib><title>Finte element modeling of the behavior of polymethyl-methacrylate (PMMA) during high pressure torsion process</title><title>Array (New York)</title><description>This work tackles crack propagation mechanisms of styrene butadiene and natural rubbers, both subject to cyclic loading under a positive load ratio. The experimental evidence is based on pure shear loading of notched specimens supported by SEM analysis of fracture surfaces. Relationship between crack growth rate and tearing energy is revisited. The experimental results show that the fatigue behaviour of studied vulcanisates can be clearly separated in the power-law regime. Furthermore, the reported results from the literature extend this statement to any load condition. Fracture surface observations reveal also differences in energy dissipation mechanisms inferred to structural mutations in the case of natural rubber. Alternation of rough and smooth fracture surfaces associated with change in crack growth rate is more likely to occur for styrene butadiene rubber. All observations suggest that crack branching is a secondary ranked dissipation mechanism for the studied materials compared to crack deviation.</description><subject>Physics</subject><issn>2590-0056</issn><issn>2590-0056</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqVizFrwzAUhEVpoKHN3lFjM7h9z5aseAylIUMCHbobJXmJVCTLSErA_742dOja6e4-7mPsGeEVUak3FLUQJShsVqKWqrlj81I2UADI-v5Pf2CLlL4BoJSIKFdz5je2y8TJkacucx9O5Gx34eHMsyF-IKNvNsRp98ENnrIZXDGFPsbB6dF9-dzv10t-usZJNPZieB8ppWsknkNMNnQjCMcRPbHZWbtEi998ZMvNx9f7tjDatX20XsehDdq22_WunRiISimE6obVf74_iYBUjQ</recordid><startdate>20200331</startdate><enddate>20200331</enddate><creator>Hamdi, Adel</creator><creator>Boulenouar, Abdelkader</creator><creator>Benseddiq, Noureddine</creator><creator>Guessasma, Sofiane</creator><general>Elsevier</general><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-6806-9694</orcidid><orcidid>https://orcid.org/0000-0001-6806-9694</orcidid></search><sort><creationdate>20200331</creationdate><title>Finte element modeling of the behavior of polymethyl-methacrylate (PMMA) during high pressure torsion process</title><author>Hamdi, Adel ; Boulenouar, Abdelkader ; Benseddiq, Noureddine ; Guessasma, Sofiane</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-hal_primary_oai_HAL_hal_04377103v13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hamdi, Adel</creatorcontrib><creatorcontrib>Boulenouar, Abdelkader</creatorcontrib><creatorcontrib>Benseddiq, Noureddine</creatorcontrib><creatorcontrib>Guessasma, Sofiane</creatorcontrib><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Array (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hamdi, Adel</au><au>Boulenouar, Abdelkader</au><au>Benseddiq, Noureddine</au><au>Guessasma, Sofiane</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finte element modeling of the behavior of polymethyl-methacrylate (PMMA) during high pressure torsion process</atitle><jtitle>Array (New York)</jtitle><date>2020-03-31</date><risdate>2020</risdate><volume>14</volume><issue>52</issue><spage>181</spage><epage>196</epage><pages>181-196</pages><issn>2590-0056</issn><eissn>2590-0056</eissn><abstract>This work tackles crack propagation mechanisms of styrene butadiene and natural rubbers, both subject to cyclic loading under a positive load ratio. The experimental evidence is based on pure shear loading of notched specimens supported by SEM analysis of fracture surfaces. Relationship between crack growth rate and tearing energy is revisited. The experimental results show that the fatigue behaviour of studied vulcanisates can be clearly separated in the power-law regime. Furthermore, the reported results from the literature extend this statement to any load condition. Fracture surface observations reveal also differences in energy dissipation mechanisms inferred to structural mutations in the case of natural rubber. Alternation of rough and smooth fracture surfaces associated with change in crack growth rate is more likely to occur for styrene butadiene rubber. All observations suggest that crack branching is a secondary ranked dissipation mechanism for the studied materials compared to crack deviation.</abstract><pub>Elsevier</pub><doi>10.1177/1464420719846579</doi><orcidid>https://orcid.org/0000-0001-6806-9694</orcidid><orcidid>https://orcid.org/0000-0001-6806-9694</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2590-0056
ispartof Array (New York), 2020-03, Vol.14 (52), p.181-196
issn 2590-0056
2590-0056
language eng
recordid cdi_hal_primary_oai_HAL_hal_04377103v1
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Physics
title Finte element modeling of the behavior of polymethyl-methacrylate (PMMA) during high pressure torsion process
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T01%3A51%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finte%20element%20modeling%20of%20the%20behavior%20of%20polymethyl-methacrylate%20(PMMA)%20during%20high%20pressure%20torsion%20process&rft.jtitle=Array%20(New%20York)&rft.au=Hamdi,%20Adel&rft.date=2020-03-31&rft.volume=14&rft.issue=52&rft.spage=181&rft.epage=196&rft.pages=181-196&rft.issn=2590-0056&rft.eissn=2590-0056&rft_id=info:doi/10.1177/1464420719846579&rft_dat=%3Chal%3Eoai_HAL_hal_04377103v1%3C/hal%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true