Decay of solitary waves of fractional Korteweg-de Vries type equations
We study the solitary waves of fractional Korteweg-de Vries type equations, that are related to the 1-dimensional semi-linear fractional equations:|D|αu+u−f(u)=0, with α∈(0,2), a prescribed coefficient p⁎(α), and a non-linearity f(u)=|u|p−1u for p∈(1,p⁎(α)), or f(u)=up with an integer p∈[2;p⁎(α)). A...
Gespeichert in:
Veröffentlicht in: | Journal of Differential Equations 2023-08, Vol.363, p.243-274 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 274 |
---|---|
container_issue | |
container_start_page | 243 |
container_title | Journal of Differential Equations |
container_volume | 363 |
creator | Eychenne, Arnaud Valet, Frédéric |
description | We study the solitary waves of fractional Korteweg-de Vries type equations, that are related to the 1-dimensional semi-linear fractional equations:|D|αu+u−f(u)=0, with α∈(0,2), a prescribed coefficient p⁎(α), and a non-linearity f(u)=|u|p−1u for p∈(1,p⁎(α)), or f(u)=up with an integer p∈[2;p⁎(α)). Asymptotic developments of order 1 at infinity of solutions are given, as well as second order developments for positive solutions, in terms of the coefficient of dispersion α and of the non-linearity p. The main tools are the kernel formulation introduced by Bona and Li, and an accurate description of the kernel by complex analysis theory. |
doi_str_mv | 10.1016/j.jde.2023.03.012 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04373210v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022039623001742</els_id><sourcerecordid>S0022039623001742</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-7b97ff50e5cd5b73d7c82955253d780202de017bf1834d19f4994c18585df40c3</originalsourceid><addsrcrecordid>eNp9UMFOwzAMjRBIjMEHcOuVQ4udNGsrThMwhpjEBbhGWeJAqrGOpGza35NqiCPSk2zZ71l-j7FLhAIBJ9dt0VoqOHBRQALyIzZCaCDnleDHbATAeQ6imZyysxhbAEQ5kSM2uyOj91nnstitfK_DPtvpLcVh4oI2ve_WepU9daGnHb3nlrK34NO-328oo69vPTDiOTtxehXp4reO2evs_uV2ni-eHx5vp4vciKrs82rZVM5JIGmsXFbCVqbmjZRcpraG9L4lwGrpsBalxcaVTVMarGUtrSvBiDG7Otz90Cu1Cf4zPaw67dV8ulDDDEqRDCNsMXHxwDWhizGQ-xMgqCE01aoUmhpCU5CAPGluDhpKJraegorG09qQ9YFMr2zn_1H_ANW0cxg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Decay of solitary waves of fractional Korteweg-de Vries type equations</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Eychenne, Arnaud ; Valet, Frédéric</creator><creatorcontrib>Eychenne, Arnaud ; Valet, Frédéric</creatorcontrib><description>We study the solitary waves of fractional Korteweg-de Vries type equations, that are related to the 1-dimensional semi-linear fractional equations:|D|αu+u−f(u)=0, with α∈(0,2), a prescribed coefficient p⁎(α), and a non-linearity f(u)=|u|p−1u for p∈(1,p⁎(α)), or f(u)=up with an integer p∈[2;p⁎(α)). Asymptotic developments of order 1 at infinity of solutions are given, as well as second order developments for positive solutions, in terms of the coefficient of dispersion α and of the non-linearity p. The main tools are the kernel formulation introduced by Bona and Li, and an accurate description of the kernel by complex analysis theory.</description><identifier>ISSN: 0022-0396</identifier><identifier>EISSN: 1090-2732</identifier><identifier>DOI: 10.1016/j.jde.2023.03.012</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Asymptotic expansion ; Fractional KdV equation ; Mathematics ; Soliton solutions</subject><ispartof>Journal of Differential Equations, 2023-08, Vol.363, p.243-274</ispartof><rights>2023 The Author(s)</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-7b97ff50e5cd5b73d7c82955253d780202de017bf1834d19f4994c18585df40c3</citedby><cites>FETCH-LOGICAL-c374t-7b97ff50e5cd5b73d7c82955253d780202de017bf1834d19f4994c18585df40c3</cites><orcidid>0000-0002-5479-2352</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jde.2023.03.012$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04373210$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Eychenne, Arnaud</creatorcontrib><creatorcontrib>Valet, Frédéric</creatorcontrib><title>Decay of solitary waves of fractional Korteweg-de Vries type equations</title><title>Journal of Differential Equations</title><description>We study the solitary waves of fractional Korteweg-de Vries type equations, that are related to the 1-dimensional semi-linear fractional equations:|D|αu+u−f(u)=0, with α∈(0,2), a prescribed coefficient p⁎(α), and a non-linearity f(u)=|u|p−1u for p∈(1,p⁎(α)), or f(u)=up with an integer p∈[2;p⁎(α)). Asymptotic developments of order 1 at infinity of solutions are given, as well as second order developments for positive solutions, in terms of the coefficient of dispersion α and of the non-linearity p. The main tools are the kernel formulation introduced by Bona and Li, and an accurate description of the kernel by complex analysis theory.</description><subject>Asymptotic expansion</subject><subject>Fractional KdV equation</subject><subject>Mathematics</subject><subject>Soliton solutions</subject><issn>0022-0396</issn><issn>1090-2732</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9UMFOwzAMjRBIjMEHcOuVQ4udNGsrThMwhpjEBbhGWeJAqrGOpGza35NqiCPSk2zZ71l-j7FLhAIBJ9dt0VoqOHBRQALyIzZCaCDnleDHbATAeQ6imZyysxhbAEQ5kSM2uyOj91nnstitfK_DPtvpLcVh4oI2ve_WepU9daGnHb3nlrK34NO-328oo69vPTDiOTtxehXp4reO2evs_uV2ni-eHx5vp4vciKrs82rZVM5JIGmsXFbCVqbmjZRcpraG9L4lwGrpsBalxcaVTVMarGUtrSvBiDG7Otz90Cu1Cf4zPaw67dV8ulDDDEqRDCNsMXHxwDWhizGQ-xMgqCE01aoUmhpCU5CAPGluDhpKJraegorG09qQ9YFMr2zn_1H_ANW0cxg</recordid><startdate>20230805</startdate><enddate>20230805</enddate><creator>Eychenne, Arnaud</creator><creator>Valet, Frédéric</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-5479-2352</orcidid></search><sort><creationdate>20230805</creationdate><title>Decay of solitary waves of fractional Korteweg-de Vries type equations</title><author>Eychenne, Arnaud ; Valet, Frédéric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-7b97ff50e5cd5b73d7c82955253d780202de017bf1834d19f4994c18585df40c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Asymptotic expansion</topic><topic>Fractional KdV equation</topic><topic>Mathematics</topic><topic>Soliton solutions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eychenne, Arnaud</creatorcontrib><creatorcontrib>Valet, Frédéric</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of Differential Equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eychenne, Arnaud</au><au>Valet, Frédéric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decay of solitary waves of fractional Korteweg-de Vries type equations</atitle><jtitle>Journal of Differential Equations</jtitle><date>2023-08-05</date><risdate>2023</risdate><volume>363</volume><spage>243</spage><epage>274</epage><pages>243-274</pages><issn>0022-0396</issn><eissn>1090-2732</eissn><abstract>We study the solitary waves of fractional Korteweg-de Vries type equations, that are related to the 1-dimensional semi-linear fractional equations:|D|αu+u−f(u)=0, with α∈(0,2), a prescribed coefficient p⁎(α), and a non-linearity f(u)=|u|p−1u for p∈(1,p⁎(α)), or f(u)=up with an integer p∈[2;p⁎(α)). Asymptotic developments of order 1 at infinity of solutions are given, as well as second order developments for positive solutions, in terms of the coefficient of dispersion α and of the non-linearity p. The main tools are the kernel formulation introduced by Bona and Li, and an accurate description of the kernel by complex analysis theory.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jde.2023.03.012</doi><tpages>32</tpages><orcidid>https://orcid.org/0000-0002-5479-2352</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-0396 |
ispartof | Journal of Differential Equations, 2023-08, Vol.363, p.243-274 |
issn | 0022-0396 1090-2732 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04373210v1 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Asymptotic expansion Fractional KdV equation Mathematics Soliton solutions |
title | Decay of solitary waves of fractional Korteweg-de Vries type equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T21%3A43%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decay%20of%20solitary%20waves%20of%20fractional%20Korteweg-de%20Vries%20type%20equations&rft.jtitle=Journal%20of%20Differential%20Equations&rft.au=Eychenne,%20Arnaud&rft.date=2023-08-05&rft.volume=363&rft.spage=243&rft.epage=274&rft.pages=243-274&rft.issn=0022-0396&rft.eissn=1090-2732&rft_id=info:doi/10.1016/j.jde.2023.03.012&rft_dat=%3Celsevier_hal_p%3ES0022039623001742%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0022039623001742&rfr_iscdi=true |