Plasmonic effects of copper nanoparticles in polymer photovoltaic devices for outdoor and indoor applications

The use of metal nanoparticles (NPs) that can trigger localized surface plasmon resonance (LSPR) is an effective method for improving the performance of organic photovoltaics (OPVs). Currently, most plasmonic NPs are based on noble metals, including gold and silver; their high cost limits their comm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2020-06, Vol.116 (25)
Hauptverfasser: Huang, Chien-Lun, Kumar, Gautham, Sharma, Ganesh D., Chen, Fang-Chung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 25
container_start_page
container_title Applied physics letters
container_volume 116
creator Huang, Chien-Lun
Kumar, Gautham
Sharma, Ganesh D.
Chen, Fang-Chung
description The use of metal nanoparticles (NPs) that can trigger localized surface plasmon resonance (LSPR) is an effective method for improving the performance of organic photovoltaics (OPVs). Currently, most plasmonic NPs are based on noble metals, including gold and silver; their high cost limits their commercial applications in the cost-effective OPVs. Herein, copper (Cu) NPs, which are more abundant and cheaper, are adopted to fabricate OPVs. To avoid oxidation of Cu NPs, they are positioned at the cathode interface, so that their fabrication could be implemented in an inert environment. The resulting OPVs exhibited improved power conversion efficiencies (PCEs) under illumination at 1 sun, and the device enhancement could be attributed to the LSPR effects of Cu NPs. Further, their potential to enhance the performance of OPVs under indoor lighting conditions is evaluated. The enhancement factor of PCEs was higher, while the light source had a lower color temperature. It could be due to the fact that the main plasmonic band of the Cu NPs is localized in the red spectral range. The results reveal the consideration of matching between the LSPR spectral range and the emission spectra of the artificial light sources is very critical for indoor applications.
doi_str_mv 10.1063/5.0010427
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04363819v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2416022903</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-6fb32bcfe2a8f5d4b759b3bb70c1fe7ed444ed4b2ec8455e1ca2ec780284781b3</originalsourceid><addsrcrecordid>eNp9kEtLAzEQx4MoWKsHv8GCJ4Wtee2jx1LUCgU96DlkswlN2e7EJF3otze1xR4EL_P8zZ-ZQeiW4AnBJXssJhgTzGl1hkYEV1XOCKnP0QhjzPJyWpBLdBXCOqUFZWyENu-dDBvorcq0MVrFkIHJFDinfdbLHpz00apOh8z2mYNut0kNt4IIA3RRprlWD1alvgGfwTa2kLzs28QfQuc6q2S00IdrdGFkF_TN0Y_R5_PTx3yRL99eXuezZa5YSWJemobRRhlNZW2KljdVMW1Y01RYEaMr3XLOk2moVjUvCk2UTGFVY1rzqiYNG6P7g-5KdsJ5u5F-J0BasZgtxb6GOStZTaYDSezdgXUevrY6RLGGre_TeoJyUmJKp5idFJWHELw2v7IEi_3nRSGOn0_sw4ENysafw3_hAfwJFK41_8F_lb8B0i6TPw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2416022903</pqid></control><display><type>article</type><title>Plasmonic effects of copper nanoparticles in polymer photovoltaic devices for outdoor and indoor applications</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Huang, Chien-Lun ; Kumar, Gautham ; Sharma, Ganesh D. ; Chen, Fang-Chung</creator><creatorcontrib>Huang, Chien-Lun ; Kumar, Gautham ; Sharma, Ganesh D. ; Chen, Fang-Chung</creatorcontrib><description>The use of metal nanoparticles (NPs) that can trigger localized surface plasmon resonance (LSPR) is an effective method for improving the performance of organic photovoltaics (OPVs). Currently, most plasmonic NPs are based on noble metals, including gold and silver; their high cost limits their commercial applications in the cost-effective OPVs. Herein, copper (Cu) NPs, which are more abundant and cheaper, are adopted to fabricate OPVs. To avoid oxidation of Cu NPs, they are positioned at the cathode interface, so that their fabrication could be implemented in an inert environment. The resulting OPVs exhibited improved power conversion efficiencies (PCEs) under illumination at 1 sun, and the device enhancement could be attributed to the LSPR effects of Cu NPs. Further, their potential to enhance the performance of OPVs under indoor lighting conditions is evaluated. The enhancement factor of PCEs was higher, while the light source had a lower color temperature. It could be due to the fact that the main plasmonic band of the Cu NPs is localized in the red spectral range. The results reveal the consideration of matching between the LSPR spectral range and the emission spectra of the artificial light sources is very critical for indoor applications.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0010427</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Color temperature ; Condensed Matter ; Copper ; Emission spectra ; Energy conversion efficiency ; Engineering Sciences ; Illumination ; Light sources ; Materials Science ; Nanoparticles ; Noble metals ; Oxidation ; Photovoltaic cells ; Physics ; Plasmonics ; Silver</subject><ispartof>Applied physics letters, 2020-06, Vol.116 (25)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-6fb32bcfe2a8f5d4b759b3bb70c1fe7ed444ed4b2ec8455e1ca2ec780284781b3</citedby><cites>FETCH-LOGICAL-c361t-6fb32bcfe2a8f5d4b759b3bb70c1fe7ed444ed4b2ec8455e1ca2ec780284781b3</cites><orcidid>0000-0002-1717-0116 ; 0000-0002-4131-3893</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0010427$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,780,790,881,4498,27901,27902,76353</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04363819$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Chien-Lun</creatorcontrib><creatorcontrib>Kumar, Gautham</creatorcontrib><creatorcontrib>Sharma, Ganesh D.</creatorcontrib><creatorcontrib>Chen, Fang-Chung</creatorcontrib><title>Plasmonic effects of copper nanoparticles in polymer photovoltaic devices for outdoor and indoor applications</title><title>Applied physics letters</title><description>The use of metal nanoparticles (NPs) that can trigger localized surface plasmon resonance (LSPR) is an effective method for improving the performance of organic photovoltaics (OPVs). Currently, most plasmonic NPs are based on noble metals, including gold and silver; their high cost limits their commercial applications in the cost-effective OPVs. Herein, copper (Cu) NPs, which are more abundant and cheaper, are adopted to fabricate OPVs. To avoid oxidation of Cu NPs, they are positioned at the cathode interface, so that their fabrication could be implemented in an inert environment. The resulting OPVs exhibited improved power conversion efficiencies (PCEs) under illumination at 1 sun, and the device enhancement could be attributed to the LSPR effects of Cu NPs. Further, their potential to enhance the performance of OPVs under indoor lighting conditions is evaluated. The enhancement factor of PCEs was higher, while the light source had a lower color temperature. It could be due to the fact that the main plasmonic band of the Cu NPs is localized in the red spectral range. The results reveal the consideration of matching between the LSPR spectral range and the emission spectra of the artificial light sources is very critical for indoor applications.</description><subject>Applied physics</subject><subject>Color temperature</subject><subject>Condensed Matter</subject><subject>Copper</subject><subject>Emission spectra</subject><subject>Energy conversion efficiency</subject><subject>Engineering Sciences</subject><subject>Illumination</subject><subject>Light sources</subject><subject>Materials Science</subject><subject>Nanoparticles</subject><subject>Noble metals</subject><subject>Oxidation</subject><subject>Photovoltaic cells</subject><subject>Physics</subject><subject>Plasmonics</subject><subject>Silver</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEQx4MoWKsHv8GCJ4Wtee2jx1LUCgU96DlkswlN2e7EJF3otze1xR4EL_P8zZ-ZQeiW4AnBJXssJhgTzGl1hkYEV1XOCKnP0QhjzPJyWpBLdBXCOqUFZWyENu-dDBvorcq0MVrFkIHJFDinfdbLHpz00apOh8z2mYNut0kNt4IIA3RRprlWD1alvgGfwTa2kLzs28QfQuc6q2S00IdrdGFkF_TN0Y_R5_PTx3yRL99eXuezZa5YSWJemobRRhlNZW2KljdVMW1Y01RYEaMr3XLOk2moVjUvCk2UTGFVY1rzqiYNG6P7g-5KdsJ5u5F-J0BasZgtxb6GOStZTaYDSezdgXUevrY6RLGGre_TeoJyUmJKp5idFJWHELw2v7IEi_3nRSGOn0_sw4ENysafw3_hAfwJFK41_8F_lb8B0i6TPw</recordid><startdate>20200622</startdate><enddate>20200622</enddate><creator>Huang, Chien-Lun</creator><creator>Kumar, Gautham</creator><creator>Sharma, Ganesh D.</creator><creator>Chen, Fang-Chung</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-1717-0116</orcidid><orcidid>https://orcid.org/0000-0002-4131-3893</orcidid></search><sort><creationdate>20200622</creationdate><title>Plasmonic effects of copper nanoparticles in polymer photovoltaic devices for outdoor and indoor applications</title><author>Huang, Chien-Lun ; Kumar, Gautham ; Sharma, Ganesh D. ; Chen, Fang-Chung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-6fb32bcfe2a8f5d4b759b3bb70c1fe7ed444ed4b2ec8455e1ca2ec780284781b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applied physics</topic><topic>Color temperature</topic><topic>Condensed Matter</topic><topic>Copper</topic><topic>Emission spectra</topic><topic>Energy conversion efficiency</topic><topic>Engineering Sciences</topic><topic>Illumination</topic><topic>Light sources</topic><topic>Materials Science</topic><topic>Nanoparticles</topic><topic>Noble metals</topic><topic>Oxidation</topic><topic>Photovoltaic cells</topic><topic>Physics</topic><topic>Plasmonics</topic><topic>Silver</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Chien-Lun</creatorcontrib><creatorcontrib>Kumar, Gautham</creatorcontrib><creatorcontrib>Sharma, Ganesh D.</creatorcontrib><creatorcontrib>Chen, Fang-Chung</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Chien-Lun</au><au>Kumar, Gautham</au><au>Sharma, Ganesh D.</au><au>Chen, Fang-Chung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plasmonic effects of copper nanoparticles in polymer photovoltaic devices for outdoor and indoor applications</atitle><jtitle>Applied physics letters</jtitle><date>2020-06-22</date><risdate>2020</risdate><volume>116</volume><issue>25</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>The use of metal nanoparticles (NPs) that can trigger localized surface plasmon resonance (LSPR) is an effective method for improving the performance of organic photovoltaics (OPVs). Currently, most plasmonic NPs are based on noble metals, including gold and silver; their high cost limits their commercial applications in the cost-effective OPVs. Herein, copper (Cu) NPs, which are more abundant and cheaper, are adopted to fabricate OPVs. To avoid oxidation of Cu NPs, they are positioned at the cathode interface, so that their fabrication could be implemented in an inert environment. The resulting OPVs exhibited improved power conversion efficiencies (PCEs) under illumination at 1 sun, and the device enhancement could be attributed to the LSPR effects of Cu NPs. Further, their potential to enhance the performance of OPVs under indoor lighting conditions is evaluated. The enhancement factor of PCEs was higher, while the light source had a lower color temperature. It could be due to the fact that the main plasmonic band of the Cu NPs is localized in the red spectral range. The results reveal the consideration of matching between the LSPR spectral range and the emission spectra of the artificial light sources is very critical for indoor applications.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0010427</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-1717-0116</orcidid><orcidid>https://orcid.org/0000-0002-4131-3893</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2020-06, Vol.116 (25)
issn 0003-6951
1077-3118
language eng
recordid cdi_hal_primary_oai_HAL_hal_04363819v1
source AIP Journals Complete; Alma/SFX Local Collection
subjects Applied physics
Color temperature
Condensed Matter
Copper
Emission spectra
Energy conversion efficiency
Engineering Sciences
Illumination
Light sources
Materials Science
Nanoparticles
Noble metals
Oxidation
Photovoltaic cells
Physics
Plasmonics
Silver
title Plasmonic effects of copper nanoparticles in polymer photovoltaic devices for outdoor and indoor applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T00%3A35%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plasmonic%20effects%20of%20copper%20nanoparticles%20in%20polymer%20photovoltaic%20devices%20for%20outdoor%20and%20indoor%20applications&rft.jtitle=Applied%20physics%20letters&rft.au=Huang,%20Chien-Lun&rft.date=2020-06-22&rft.volume=116&rft.issue=25&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0010427&rft_dat=%3Cproquest_hal_p%3E2416022903%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2416022903&rft_id=info:pmid/&rfr_iscdi=true