Nonlinear-cost random walk: Exact statistics of the distance covered for fixed budget

We consider the nonlinear-cost random-walk model in discrete time introduced in Phys. Rev. Lett. 130, 237102 (2023)10.1103/PhysRevLett.130.237102, where a fee is charged for each jump of the walker. The nonlinear cost function is such that slow or short jumps incur a flat fee, while for fast or long...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E 2023-12, Vol.108 (6-1), p.064122-064122, Article 064122
Hauptverfasser: Majumdar, Satya N, Mori, Francesco, Vivo, Pierpaolo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 064122
container_issue 6-1
container_start_page 064122
container_title Physical review. E
container_volume 108
creator Majumdar, Satya N
Mori, Francesco
Vivo, Pierpaolo
description We consider the nonlinear-cost random-walk model in discrete time introduced in Phys. Rev. Lett. 130, 237102 (2023)10.1103/PhysRevLett.130.237102, where a fee is charged for each jump of the walker. The nonlinear cost function is such that slow or short jumps incur a flat fee, while for fast or long jumps the cost is proportional to the distance covered. In this paper we compute analytically the average and variance of the distance covered in n steps when the total budget C is fixed, as well as the statistics of the number of long or short jumps in a trajectory of length n, for the exponential jump distribution. These observables exhibit a very rich and nonmonotonic scaling behavior as a function of the variable C/n, which is traced back to the makeup of a typical trajectory in terms of long or short jumps, and the resulting entropy thereof. As a by-product, we compute the asymptotic behavior of ratios of Kummer hypergeometric functions when both the first and last arguments are large. All our analytical results are corroborated by numerical simulations.
doi_str_mv 10.1103/PhysRevE.108.064122
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04362010v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2929056472</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-fd36609746fb7d116ec914ae43a9dcdebe5551ef6ea792e51d5d2a48674a0ca13</originalsourceid><addsrcrecordid>eNo9UF1PGzEQtFARiYBfgFT5sX24dP1xvlzfIhSgUlQQgmdrY--Ray_n1HYC_PteFMjTzo5mdkfD2JWAiRCgfjys3tMj7eYTAdMJGC2kPGFjqSsoAEr15Yh1OWKXKf0BAGGgroQ8YyM1lVqVpRiz59-h79qeMBYupMwj9j6s-St2f3_y-Ru6zFPG3KbcusRDw_OKuB9W7B1xF3YUyfMmRN60bwNabv0L5Qt22mCX6PJjnrPnm_nT9V2xuL_9dT1bFE4pnYvGK7PPpE2zrLwQhlwtNJJWWHvnaUnlEJIaQ1jVkkrhSy9RT02lERwKdc6-H-6usLOb2K4xvtuArb2bLeyeA62MBAG7vfbbQbuJ4d-WUrbrNjnqOuwpbJOVtayhNLqSg1QdpC6GlCI1x9sC7L5--1n_QEztof7B9fXjwXa5Jn_0fJat_gN6toGi</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2929056472</pqid></control><display><type>article</type><title>Nonlinear-cost random walk: Exact statistics of the distance covered for fixed budget</title><source>American Physical Society Journals</source><creator>Majumdar, Satya N ; Mori, Francesco ; Vivo, Pierpaolo</creator><creatorcontrib>Majumdar, Satya N ; Mori, Francesco ; Vivo, Pierpaolo</creatorcontrib><description>We consider the nonlinear-cost random-walk model in discrete time introduced in Phys. Rev. Lett. 130, 237102 (2023)10.1103/PhysRevLett.130.237102, where a fee is charged for each jump of the walker. The nonlinear cost function is such that slow or short jumps incur a flat fee, while for fast or long jumps the cost is proportional to the distance covered. In this paper we compute analytically the average and variance of the distance covered in n steps when the total budget C is fixed, as well as the statistics of the number of long or short jumps in a trajectory of length n, for the exponential jump distribution. These observables exhibit a very rich and nonmonotonic scaling behavior as a function of the variable C/n, which is traced back to the makeup of a typical trajectory in terms of long or short jumps, and the resulting entropy thereof. As a by-product, we compute the asymptotic behavior of ratios of Kummer hypergeometric functions when both the first and last arguments are large. All our analytical results are corroborated by numerical simulations.</description><identifier>ISSN: 2470-0045</identifier><identifier>EISSN: 2470-0053</identifier><identifier>DOI: 10.1103/PhysRevE.108.064122</identifier><identifier>PMID: 38243551</identifier><language>eng</language><publisher>United States: American Physical Society (APS)</publisher><subject>Physics</subject><ispartof>Physical review. E, 2023-12, Vol.108 (6-1), p.064122-064122, Article 064122</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c334t-fd36609746fb7d116ec914ae43a9dcdebe5551ef6ea792e51d5d2a48674a0ca13</cites><orcidid>0000-0001-9844-6980 ; 0000-0002-5900-2487</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38243551$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04362010$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Majumdar, Satya N</creatorcontrib><creatorcontrib>Mori, Francesco</creatorcontrib><creatorcontrib>Vivo, Pierpaolo</creatorcontrib><title>Nonlinear-cost random walk: Exact statistics of the distance covered for fixed budget</title><title>Physical review. E</title><addtitle>Phys Rev E</addtitle><description>We consider the nonlinear-cost random-walk model in discrete time introduced in Phys. Rev. Lett. 130, 237102 (2023)10.1103/PhysRevLett.130.237102, where a fee is charged for each jump of the walker. The nonlinear cost function is such that slow or short jumps incur a flat fee, while for fast or long jumps the cost is proportional to the distance covered. In this paper we compute analytically the average and variance of the distance covered in n steps when the total budget C is fixed, as well as the statistics of the number of long or short jumps in a trajectory of length n, for the exponential jump distribution. These observables exhibit a very rich and nonmonotonic scaling behavior as a function of the variable C/n, which is traced back to the makeup of a typical trajectory in terms of long or short jumps, and the resulting entropy thereof. As a by-product, we compute the asymptotic behavior of ratios of Kummer hypergeometric functions when both the first and last arguments are large. All our analytical results are corroborated by numerical simulations.</description><subject>Physics</subject><issn>2470-0045</issn><issn>2470-0053</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9UF1PGzEQtFARiYBfgFT5sX24dP1xvlzfIhSgUlQQgmdrY--Ray_n1HYC_PteFMjTzo5mdkfD2JWAiRCgfjys3tMj7eYTAdMJGC2kPGFjqSsoAEr15Yh1OWKXKf0BAGGgroQ8YyM1lVqVpRiz59-h79qeMBYupMwj9j6s-St2f3_y-Ru6zFPG3KbcusRDw_OKuB9W7B1xF3YUyfMmRN60bwNabv0L5Qt22mCX6PJjnrPnm_nT9V2xuL_9dT1bFE4pnYvGK7PPpE2zrLwQhlwtNJJWWHvnaUnlEJIaQ1jVkkrhSy9RT02lERwKdc6-H-6usLOb2K4xvtuArb2bLeyeA62MBAG7vfbbQbuJ4d-WUrbrNjnqOuwpbJOVtayhNLqSg1QdpC6GlCI1x9sC7L5--1n_QEztof7B9fXjwXa5Jn_0fJat_gN6toGi</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Majumdar, Satya N</creator><creator>Mori, Francesco</creator><creator>Vivo, Pierpaolo</creator><general>American Physical Society (APS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-9844-6980</orcidid><orcidid>https://orcid.org/0000-0002-5900-2487</orcidid></search><sort><creationdate>20231201</creationdate><title>Nonlinear-cost random walk: Exact statistics of the distance covered for fixed budget</title><author>Majumdar, Satya N ; Mori, Francesco ; Vivo, Pierpaolo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-fd36609746fb7d116ec914ae43a9dcdebe5551ef6ea792e51d5d2a48674a0ca13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Majumdar, Satya N</creatorcontrib><creatorcontrib>Mori, Francesco</creatorcontrib><creatorcontrib>Vivo, Pierpaolo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Physical review. E</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Majumdar, Satya N</au><au>Mori, Francesco</au><au>Vivo, Pierpaolo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear-cost random walk: Exact statistics of the distance covered for fixed budget</atitle><jtitle>Physical review. E</jtitle><addtitle>Phys Rev E</addtitle><date>2023-12-01</date><risdate>2023</risdate><volume>108</volume><issue>6-1</issue><spage>064122</spage><epage>064122</epage><pages>064122-064122</pages><artnum>064122</artnum><issn>2470-0045</issn><eissn>2470-0053</eissn><abstract>We consider the nonlinear-cost random-walk model in discrete time introduced in Phys. Rev. Lett. 130, 237102 (2023)10.1103/PhysRevLett.130.237102, where a fee is charged for each jump of the walker. The nonlinear cost function is such that slow or short jumps incur a flat fee, while for fast or long jumps the cost is proportional to the distance covered. In this paper we compute analytically the average and variance of the distance covered in n steps when the total budget C is fixed, as well as the statistics of the number of long or short jumps in a trajectory of length n, for the exponential jump distribution. These observables exhibit a very rich and nonmonotonic scaling behavior as a function of the variable C/n, which is traced back to the makeup of a typical trajectory in terms of long or short jumps, and the resulting entropy thereof. As a by-product, we compute the asymptotic behavior of ratios of Kummer hypergeometric functions when both the first and last arguments are large. All our analytical results are corroborated by numerical simulations.</abstract><cop>United States</cop><pub>American Physical Society (APS)</pub><pmid>38243551</pmid><doi>10.1103/PhysRevE.108.064122</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-9844-6980</orcidid><orcidid>https://orcid.org/0000-0002-5900-2487</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2470-0045
ispartof Physical review. E, 2023-12, Vol.108 (6-1), p.064122-064122, Article 064122
issn 2470-0045
2470-0053
language eng
recordid cdi_hal_primary_oai_HAL_hal_04362010v1
source American Physical Society Journals
subjects Physics
title Nonlinear-cost random walk: Exact statistics of the distance covered for fixed budget
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T06%3A38%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear-cost%20random%20walk:%20Exact%20statistics%20of%20the%20distance%20covered%20for%20fixed%20budget&rft.jtitle=Physical%20review.%20E&rft.au=Majumdar,%20Satya%20N&rft.date=2023-12-01&rft.volume=108&rft.issue=6-1&rft.spage=064122&rft.epage=064122&rft.pages=064122-064122&rft.artnum=064122&rft.issn=2470-0045&rft.eissn=2470-0053&rft_id=info:doi/10.1103/PhysRevE.108.064122&rft_dat=%3Cproquest_hal_p%3E2929056472%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2929056472&rft_id=info:pmid/38243551&rfr_iscdi=true