Artificial intelligence in vascular surgical decision making

Despite advances in prevention, detection, and treatment, cardiovascular disease is a leading cause of mortality and represents a major health problem worldwide. Artificial intelligence and machine learning have brought new insights to the management of vascular diseases by allowing analysis of huge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Seminars in vascular surgery 2023-09, Vol.36 (3), p.448-453
Hauptverfasser: Lareyre, Fabien, Yeung, Kak Khee, Guzzi, Lisa, Di Lorenzo, Gilles, Chaudhuri, Arindam, Behrendt, Christian-Alexander, Spanos, Konstantinos, Raffort, Juliette
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 453
container_issue 3
container_start_page 448
container_title Seminars in vascular surgery
container_volume 36
creator Lareyre, Fabien
Yeung, Kak Khee
Guzzi, Lisa
Di Lorenzo, Gilles
Chaudhuri, Arindam
Behrendt, Christian-Alexander
Spanos, Konstantinos
Raffort, Juliette
description Despite advances in prevention, detection, and treatment, cardiovascular disease is a leading cause of mortality and represents a major health problem worldwide. Artificial intelligence and machine learning have brought new insights to the management of vascular diseases by allowing analysis of huge and complex datasets and by offering new techniques to develop advanced imaging analysis. Artificial intelligence–based applications have the potential to improve prognostic evaluation and evidence-based decision making and contribute to vascular therapeutic decision making. In this scoping review, we provide an overview on how artificial intelligence could help in vascular surgical clinical decision making, highlighting potential benefits, current limitations, and future challenges.
doi_str_mv 10.1053/j.semvascsurg.2023.05.004
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04361618v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S089579672300039X</els_id><sourcerecordid>2880102988</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-e1f24d4278bdb801e33d9add4876410436314c2a6d7850f7a3a42d45bf6070e73</originalsourceid><addsrcrecordid>eNqNkE1LwzAYgIMoOKf_od700Prmq0nByxjqhIEXPYcsSWdm186kHfjvTamIR08h4Xkf8j4IXWMoMHB6tyui2x91NHEI24IAoQXwAoCdoBnmXOaMY3mKZiArnouqFOfoIsYdAClLImbofhF6X3vjdZP5tndN47euNS5dslE7NDpko9ubRFhnfPRdm-31h2-3l-is1k10Vz_nHL09PrwuV_n65el5uVjnhkrZ5w7XhFlGhNzYjQTsKLWVtpZJUTIMjJYUM0N0aYXkUAtNNSOW8U1dggAn6BzdTt533ahD8HsdvlSnvVot1mp8Gx24xPKIE3szsYfQfQ4u9mrvo0l76dZ1Q1REph8AqaRMaDWhJnQxBlf_ujGosa7aqT911VhXAVepbppdTrMu7X30Lqho_BjO-uBMr2zn_2H5Bi6TiGs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2880102988</pqid></control><display><type>article</type><title>Artificial intelligence in vascular surgical decision making</title><source>Access via ScienceDirect (Elsevier)</source><creator>Lareyre, Fabien ; Yeung, Kak Khee ; Guzzi, Lisa ; Di Lorenzo, Gilles ; Chaudhuri, Arindam ; Behrendt, Christian-Alexander ; Spanos, Konstantinos ; Raffort, Juliette</creator><creatorcontrib>Lareyre, Fabien ; Yeung, Kak Khee ; Guzzi, Lisa ; Di Lorenzo, Gilles ; Chaudhuri, Arindam ; Behrendt, Christian-Alexander ; Spanos, Konstantinos ; Raffort, Juliette</creatorcontrib><description>Despite advances in prevention, detection, and treatment, cardiovascular disease is a leading cause of mortality and represents a major health problem worldwide. Artificial intelligence and machine learning have brought new insights to the management of vascular diseases by allowing analysis of huge and complex datasets and by offering new techniques to develop advanced imaging analysis. Artificial intelligence–based applications have the potential to improve prognostic evaluation and evidence-based decision making and contribute to vascular therapeutic decision making. In this scoping review, we provide an overview on how artificial intelligence could help in vascular surgical clinical decision making, highlighting potential benefits, current limitations, and future challenges.</description><identifier>ISSN: 0895-7967</identifier><identifier>EISSN: 1558-4518</identifier><identifier>DOI: 10.1053/j.semvascsurg.2023.05.004</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Artificial Intelligence ; Cardiology and cardiovascular system ; Computer Science ; Decision making ; Human health and pathology ; Life Sciences ; Machine learning ; Precision medicine ; Surgery ; Vascular disease</subject><ispartof>Seminars in vascular surgery, 2023-09, Vol.36 (3), p.448-453</ispartof><rights>2023 Elsevier Inc.</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-e1f24d4278bdb801e33d9add4876410436314c2a6d7850f7a3a42d45bf6070e73</citedby><cites>FETCH-LOGICAL-c388t-e1f24d4278bdb801e33d9add4876410436314c2a6d7850f7a3a42d45bf6070e73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://inria.hal.science/hal-04361618$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lareyre, Fabien</creatorcontrib><creatorcontrib>Yeung, Kak Khee</creatorcontrib><creatorcontrib>Guzzi, Lisa</creatorcontrib><creatorcontrib>Di Lorenzo, Gilles</creatorcontrib><creatorcontrib>Chaudhuri, Arindam</creatorcontrib><creatorcontrib>Behrendt, Christian-Alexander</creatorcontrib><creatorcontrib>Spanos, Konstantinos</creatorcontrib><creatorcontrib>Raffort, Juliette</creatorcontrib><title>Artificial intelligence in vascular surgical decision making</title><title>Seminars in vascular surgery</title><description>Despite advances in prevention, detection, and treatment, cardiovascular disease is a leading cause of mortality and represents a major health problem worldwide. Artificial intelligence and machine learning have brought new insights to the management of vascular diseases by allowing analysis of huge and complex datasets and by offering new techniques to develop advanced imaging analysis. Artificial intelligence–based applications have the potential to improve prognostic evaluation and evidence-based decision making and contribute to vascular therapeutic decision making. In this scoping review, we provide an overview on how artificial intelligence could help in vascular surgical clinical decision making, highlighting potential benefits, current limitations, and future challenges.</description><subject>Artificial Intelligence</subject><subject>Cardiology and cardiovascular system</subject><subject>Computer Science</subject><subject>Decision making</subject><subject>Human health and pathology</subject><subject>Life Sciences</subject><subject>Machine learning</subject><subject>Precision medicine</subject><subject>Surgery</subject><subject>Vascular disease</subject><issn>0895-7967</issn><issn>1558-4518</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqNkE1LwzAYgIMoOKf_od700Prmq0nByxjqhIEXPYcsSWdm186kHfjvTamIR08h4Xkf8j4IXWMoMHB6tyui2x91NHEI24IAoQXwAoCdoBnmXOaMY3mKZiArnouqFOfoIsYdAClLImbofhF6X3vjdZP5tndN47euNS5dslE7NDpko9ubRFhnfPRdm-31h2-3l-is1k10Vz_nHL09PrwuV_n65el5uVjnhkrZ5w7XhFlGhNzYjQTsKLWVtpZJUTIMjJYUM0N0aYXkUAtNNSOW8U1dggAn6BzdTt533ahD8HsdvlSnvVot1mp8Gx24xPKIE3szsYfQfQ4u9mrvo0l76dZ1Q1REph8AqaRMaDWhJnQxBlf_ujGosa7aqT911VhXAVepbppdTrMu7X30Lqho_BjO-uBMr2zn_2H5Bi6TiGs</recordid><startdate>202309</startdate><enddate>202309</enddate><creator>Lareyre, Fabien</creator><creator>Yeung, Kak Khee</creator><creator>Guzzi, Lisa</creator><creator>Di Lorenzo, Gilles</creator><creator>Chaudhuri, Arindam</creator><creator>Behrendt, Christian-Alexander</creator><creator>Spanos, Konstantinos</creator><creator>Raffort, Juliette</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope></search><sort><creationdate>202309</creationdate><title>Artificial intelligence in vascular surgical decision making</title><author>Lareyre, Fabien ; Yeung, Kak Khee ; Guzzi, Lisa ; Di Lorenzo, Gilles ; Chaudhuri, Arindam ; Behrendt, Christian-Alexander ; Spanos, Konstantinos ; Raffort, Juliette</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-e1f24d4278bdb801e33d9add4876410436314c2a6d7850f7a3a42d45bf6070e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial Intelligence</topic><topic>Cardiology and cardiovascular system</topic><topic>Computer Science</topic><topic>Decision making</topic><topic>Human health and pathology</topic><topic>Life Sciences</topic><topic>Machine learning</topic><topic>Precision medicine</topic><topic>Surgery</topic><topic>Vascular disease</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lareyre, Fabien</creatorcontrib><creatorcontrib>Yeung, Kak Khee</creatorcontrib><creatorcontrib>Guzzi, Lisa</creatorcontrib><creatorcontrib>Di Lorenzo, Gilles</creatorcontrib><creatorcontrib>Chaudhuri, Arindam</creatorcontrib><creatorcontrib>Behrendt, Christian-Alexander</creatorcontrib><creatorcontrib>Spanos, Konstantinos</creatorcontrib><creatorcontrib>Raffort, Juliette</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Seminars in vascular surgery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lareyre, Fabien</au><au>Yeung, Kak Khee</au><au>Guzzi, Lisa</au><au>Di Lorenzo, Gilles</au><au>Chaudhuri, Arindam</au><au>Behrendt, Christian-Alexander</au><au>Spanos, Konstantinos</au><au>Raffort, Juliette</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial intelligence in vascular surgical decision making</atitle><jtitle>Seminars in vascular surgery</jtitle><date>2023-09</date><risdate>2023</risdate><volume>36</volume><issue>3</issue><spage>448</spage><epage>453</epage><pages>448-453</pages><issn>0895-7967</issn><eissn>1558-4518</eissn><abstract>Despite advances in prevention, detection, and treatment, cardiovascular disease is a leading cause of mortality and represents a major health problem worldwide. Artificial intelligence and machine learning have brought new insights to the management of vascular diseases by allowing analysis of huge and complex datasets and by offering new techniques to develop advanced imaging analysis. Artificial intelligence–based applications have the potential to improve prognostic evaluation and evidence-based decision making and contribute to vascular therapeutic decision making. In this scoping review, we provide an overview on how artificial intelligence could help in vascular surgical clinical decision making, highlighting potential benefits, current limitations, and future challenges.</abstract><pub>Elsevier Inc</pub><doi>10.1053/j.semvascsurg.2023.05.004</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0895-7967
ispartof Seminars in vascular surgery, 2023-09, Vol.36 (3), p.448-453
issn 0895-7967
1558-4518
language eng
recordid cdi_hal_primary_oai_HAL_hal_04361618v1
source Access via ScienceDirect (Elsevier)
subjects Artificial Intelligence
Cardiology and cardiovascular system
Computer Science
Decision making
Human health and pathology
Life Sciences
Machine learning
Precision medicine
Surgery
Vascular disease
title Artificial intelligence in vascular surgical decision making
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T18%3A32%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20intelligence%20in%20vascular%20surgical%20decision%20making&rft.jtitle=Seminars%20in%20vascular%20surgery&rft.au=Lareyre,%20Fabien&rft.date=2023-09&rft.volume=36&rft.issue=3&rft.spage=448&rft.epage=453&rft.pages=448-453&rft.issn=0895-7967&rft.eissn=1558-4518&rft_id=info:doi/10.1053/j.semvascsurg.2023.05.004&rft_dat=%3Cproquest_hal_p%3E2880102988%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2880102988&rft_id=info:pmid/&rft_els_id=S089579672300039X&rfr_iscdi=true