Fetal heart rate variability analysis for neonatal acidosis prediction

Fetal well-being during labor is usually assessed by visual analysis of a fetal heart rate (FHR) tracing. Our primary objective was to evaluate the ability of automated heart rate variability (HRV) analysis methods, including our new fetal stress index (FSI), to predict neonatal acidosis. 552 intrap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of clinical monitoring and computing 2021-08, Vol.35 (4), p.771-777
Hauptverfasser: Gatellier, M.-A., De Jonckheere, J., Storme, L., Houfflin-Debarge, V., Ghesquiere, L., Garabedian, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 777
container_issue 4
container_start_page 771
container_title Journal of clinical monitoring and computing
container_volume 35
creator Gatellier, M.-A.
De Jonckheere, J.
Storme, L.
Houfflin-Debarge, V.
Ghesquiere, L.
Garabedian, C.
description Fetal well-being during labor is usually assessed by visual analysis of a fetal heart rate (FHR) tracing. Our primary objective was to evaluate the ability of automated heart rate variability (HRV) analysis methods, including our new fetal stress index (FSI), to predict neonatal acidosis. 552 intrapartum recordings were analyzed. The analysis occurred in the last 90 min before birth and was conducted during two 5-min intervals: (i) a stable period of FHR and (ii) the period corresponding to the maximum FSI value. For each period, we computed the mean FHR, FSI, short-term variability (STV), and long-term variability (LTV). Visual FHR interpretation was performed using the FIGO classification. The population was separated into two groups: (i) an acidotic group with an arterial pH at birth ≤ 7.10 and a control group. Prediction of a neonatal pH ≤ 7.10 was assessed by computing the receiver-operating characteristic area under the curve (AUC). FHR, FSI, STV, and LTV did not differ significantly between groups during the stable period. During the FSI max peak period, LTV and STV correlated significantly in the acidotic group (– 5.85 ± 2.19, p  = 0.010 and – 0.62 ± 0.29, p  = 0.037, respectively). The AUC values were 0.569 for FIGO classification, 0.595 for STV, and 0.622 for LTV. The multivariate model (FIGO, FSI, FC, STV, LTV) had the greatest accuracy for predicting acidosis (AUC = 0.719). FSI was not predictive of neonatal acidosis probably because of the low quality of the FHR signal in cardiotocography. When used separately, HRV indexes and visual FHR analysis were poor predictors of neonatal acidosis. Including all indexes in a multivariate model increased the predictive ability.
doi_str_mv 10.1007/s10877-020-00535-6
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04355509v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2552759109</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-3a79ad007427c2537b0be26444dea03caee7b67c138e6fb2b48f5aa85449eccd3</originalsourceid><addsrcrecordid>eNp9kU1P3DAQhq2Kqnz-gR6qSFzgEDr-iuMjQl1AWolLe7YmzqQYZZOtnUXaf1-HUJB64DTW-Jl33tHL2FcOVxzAfE8camNKEFACaKnL6hM74trIUlRcHeS3rE3JJZhDdpzSEwDYWvIv7FAKpblR9oitVjRhXzwSxqmIOFHxjDFgE_ow7QscsN-nkIpujMVA44AzjD6049zdRmqDn8I4nLLPHfaJzl7rCfu1-vHz5q5cP9ze31yvS6_ATqVEY7HN3pUwXmhpGmhIVEqplhCkRyLTVMZn41R1jWhU3WnEWitlyftWnrDLRfcRe7eNYYNx70YM7u567eYeKKm1BvvMM3uxsNs4_tlRmtwmJE99j_mSXXJCQWWVrWSV0fP_0KdxF_PxmdJaGG052EyJhfJxTClS9-aAg5sTcUsiLifiXhJxs_S3V-lds6H2beRfBBmQC5Dy1_Cb4vvuD2T_AoDulRc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2552759109</pqid></control><display><type>article</type><title>Fetal heart rate variability analysis for neonatal acidosis prediction</title><source>SpringerLink Journals - AutoHoldings</source><creator>Gatellier, M.-A. ; De Jonckheere, J. ; Storme, L. ; Houfflin-Debarge, V. ; Ghesquiere, L. ; Garabedian, C.</creator><creatorcontrib>Gatellier, M.-A. ; De Jonckheere, J. ; Storme, L. ; Houfflin-Debarge, V. ; Ghesquiere, L. ; Garabedian, C.</creatorcontrib><description>Fetal well-being during labor is usually assessed by visual analysis of a fetal heart rate (FHR) tracing. Our primary objective was to evaluate the ability of automated heart rate variability (HRV) analysis methods, including our new fetal stress index (FSI), to predict neonatal acidosis. 552 intrapartum recordings were analyzed. The analysis occurred in the last 90 min before birth and was conducted during two 5-min intervals: (i) a stable period of FHR and (ii) the period corresponding to the maximum FSI value. For each period, we computed the mean FHR, FSI, short-term variability (STV), and long-term variability (LTV). Visual FHR interpretation was performed using the FIGO classification. The population was separated into two groups: (i) an acidotic group with an arterial pH at birth ≤ 7.10 and a control group. Prediction of a neonatal pH ≤ 7.10 was assessed by computing the receiver-operating characteristic area under the curve (AUC). FHR, FSI, STV, and LTV did not differ significantly between groups during the stable period. During the FSI max peak period, LTV and STV correlated significantly in the acidotic group (– 5.85 ± 2.19, p  = 0.010 and – 0.62 ± 0.29, p  = 0.037, respectively). The AUC values were 0.569 for FIGO classification, 0.595 for STV, and 0.622 for LTV. The multivariate model (FIGO, FSI, FC, STV, LTV) had the greatest accuracy for predicting acidosis (AUC = 0.719). FSI was not predictive of neonatal acidosis probably because of the low quality of the FHR signal in cardiotocography. When used separately, HRV indexes and visual FHR analysis were poor predictors of neonatal acidosis. Including all indexes in a multivariate model increased the predictive ability.</description><identifier>ISSN: 1387-1307</identifier><identifier>EISSN: 1573-2614</identifier><identifier>DOI: 10.1007/s10877-020-00535-6</identifier><identifier>PMID: 32451749</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Acidosis ; Anesthesiology ; Classification ; Critical Care Medicine ; Health Sciences ; Heart rate ; Intensive ; Life Sciences ; Medicine ; Medicine &amp; Public Health ; Multivariate analysis ; Newborn babies ; Original Research ; Signal quality ; Statistics for Life Sciences ; Visual signals ; Well being</subject><ispartof>Journal of clinical monitoring and computing, 2021-08, Vol.35 (4), p.771-777</ispartof><rights>Springer Nature B.V. 2020</rights><rights>Springer Nature B.V. 2020.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-3a79ad007427c2537b0be26444dea03caee7b67c138e6fb2b48f5aa85449eccd3</citedby><cites>FETCH-LOGICAL-c409t-3a79ad007427c2537b0be26444dea03caee7b67c138e6fb2b48f5aa85449eccd3</cites><orcidid>0000-0002-2344-3694</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10877-020-00535-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10877-020-00535-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32451749$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.univ-lille.fr/hal-04355509$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gatellier, M.-A.</creatorcontrib><creatorcontrib>De Jonckheere, J.</creatorcontrib><creatorcontrib>Storme, L.</creatorcontrib><creatorcontrib>Houfflin-Debarge, V.</creatorcontrib><creatorcontrib>Ghesquiere, L.</creatorcontrib><creatorcontrib>Garabedian, C.</creatorcontrib><title>Fetal heart rate variability analysis for neonatal acidosis prediction</title><title>Journal of clinical monitoring and computing</title><addtitle>J Clin Monit Comput</addtitle><addtitle>J Clin Monit Comput</addtitle><description>Fetal well-being during labor is usually assessed by visual analysis of a fetal heart rate (FHR) tracing. Our primary objective was to evaluate the ability of automated heart rate variability (HRV) analysis methods, including our new fetal stress index (FSI), to predict neonatal acidosis. 552 intrapartum recordings were analyzed. The analysis occurred in the last 90 min before birth and was conducted during two 5-min intervals: (i) a stable period of FHR and (ii) the period corresponding to the maximum FSI value. For each period, we computed the mean FHR, FSI, short-term variability (STV), and long-term variability (LTV). Visual FHR interpretation was performed using the FIGO classification. The population was separated into two groups: (i) an acidotic group with an arterial pH at birth ≤ 7.10 and a control group. Prediction of a neonatal pH ≤ 7.10 was assessed by computing the receiver-operating characteristic area under the curve (AUC). FHR, FSI, STV, and LTV did not differ significantly between groups during the stable period. During the FSI max peak period, LTV and STV correlated significantly in the acidotic group (– 5.85 ± 2.19, p  = 0.010 and – 0.62 ± 0.29, p  = 0.037, respectively). The AUC values were 0.569 for FIGO classification, 0.595 for STV, and 0.622 for LTV. The multivariate model (FIGO, FSI, FC, STV, LTV) had the greatest accuracy for predicting acidosis (AUC = 0.719). FSI was not predictive of neonatal acidosis probably because of the low quality of the FHR signal in cardiotocography. When used separately, HRV indexes and visual FHR analysis were poor predictors of neonatal acidosis. Including all indexes in a multivariate model increased the predictive ability.</description><subject>Acidosis</subject><subject>Anesthesiology</subject><subject>Classification</subject><subject>Critical Care Medicine</subject><subject>Health Sciences</subject><subject>Heart rate</subject><subject>Intensive</subject><subject>Life Sciences</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Multivariate analysis</subject><subject>Newborn babies</subject><subject>Original Research</subject><subject>Signal quality</subject><subject>Statistics for Life Sciences</subject><subject>Visual signals</subject><subject>Well being</subject><issn>1387-1307</issn><issn>1573-2614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kU1P3DAQhq2Kqnz-gR6qSFzgEDr-iuMjQl1AWolLe7YmzqQYZZOtnUXaf1-HUJB64DTW-Jl33tHL2FcOVxzAfE8camNKEFACaKnL6hM74trIUlRcHeS3rE3JJZhDdpzSEwDYWvIv7FAKpblR9oitVjRhXzwSxqmIOFHxjDFgE_ow7QscsN-nkIpujMVA44AzjD6049zdRmqDn8I4nLLPHfaJzl7rCfu1-vHz5q5cP9ze31yvS6_ATqVEY7HN3pUwXmhpGmhIVEqplhCkRyLTVMZn41R1jWhU3WnEWitlyftWnrDLRfcRe7eNYYNx70YM7u567eYeKKm1BvvMM3uxsNs4_tlRmtwmJE99j_mSXXJCQWWVrWSV0fP_0KdxF_PxmdJaGG052EyJhfJxTClS9-aAg5sTcUsiLifiXhJxs_S3V-lds6H2beRfBBmQC5Dy1_Cb4vvuD2T_AoDulRc</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Gatellier, M.-A.</creator><creator>De Jonckheere, J.</creator><creator>Storme, L.</creator><creator>Houfflin-Debarge, V.</creator><creator>Ghesquiere, L.</creator><creator>Garabedian, C.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-2344-3694</orcidid></search><sort><creationdate>20210801</creationdate><title>Fetal heart rate variability analysis for neonatal acidosis prediction</title><author>Gatellier, M.-A. ; De Jonckheere, J. ; Storme, L. ; Houfflin-Debarge, V. ; Ghesquiere, L. ; Garabedian, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-3a79ad007427c2537b0be26444dea03caee7b67c138e6fb2b48f5aa85449eccd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acidosis</topic><topic>Anesthesiology</topic><topic>Classification</topic><topic>Critical Care Medicine</topic><topic>Health Sciences</topic><topic>Heart rate</topic><topic>Intensive</topic><topic>Life Sciences</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Multivariate analysis</topic><topic>Newborn babies</topic><topic>Original Research</topic><topic>Signal quality</topic><topic>Statistics for Life Sciences</topic><topic>Visual signals</topic><topic>Well being</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gatellier, M.-A.</creatorcontrib><creatorcontrib>De Jonckheere, J.</creatorcontrib><creatorcontrib>Storme, L.</creatorcontrib><creatorcontrib>Houfflin-Debarge, V.</creatorcontrib><creatorcontrib>Ghesquiere, L.</creatorcontrib><creatorcontrib>Garabedian, C.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of clinical monitoring and computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gatellier, M.-A.</au><au>De Jonckheere, J.</au><au>Storme, L.</au><au>Houfflin-Debarge, V.</au><au>Ghesquiere, L.</au><au>Garabedian, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fetal heart rate variability analysis for neonatal acidosis prediction</atitle><jtitle>Journal of clinical monitoring and computing</jtitle><stitle>J Clin Monit Comput</stitle><addtitle>J Clin Monit Comput</addtitle><date>2021-08-01</date><risdate>2021</risdate><volume>35</volume><issue>4</issue><spage>771</spage><epage>777</epage><pages>771-777</pages><issn>1387-1307</issn><eissn>1573-2614</eissn><abstract>Fetal well-being during labor is usually assessed by visual analysis of a fetal heart rate (FHR) tracing. Our primary objective was to evaluate the ability of automated heart rate variability (HRV) analysis methods, including our new fetal stress index (FSI), to predict neonatal acidosis. 552 intrapartum recordings were analyzed. The analysis occurred in the last 90 min before birth and was conducted during two 5-min intervals: (i) a stable period of FHR and (ii) the period corresponding to the maximum FSI value. For each period, we computed the mean FHR, FSI, short-term variability (STV), and long-term variability (LTV). Visual FHR interpretation was performed using the FIGO classification. The population was separated into two groups: (i) an acidotic group with an arterial pH at birth ≤ 7.10 and a control group. Prediction of a neonatal pH ≤ 7.10 was assessed by computing the receiver-operating characteristic area under the curve (AUC). FHR, FSI, STV, and LTV did not differ significantly between groups during the stable period. During the FSI max peak period, LTV and STV correlated significantly in the acidotic group (– 5.85 ± 2.19, p  = 0.010 and – 0.62 ± 0.29, p  = 0.037, respectively). The AUC values were 0.569 for FIGO classification, 0.595 for STV, and 0.622 for LTV. The multivariate model (FIGO, FSI, FC, STV, LTV) had the greatest accuracy for predicting acidosis (AUC = 0.719). FSI was not predictive of neonatal acidosis probably because of the low quality of the FHR signal in cardiotocography. When used separately, HRV indexes and visual FHR analysis were poor predictors of neonatal acidosis. Including all indexes in a multivariate model increased the predictive ability.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>32451749</pmid><doi>10.1007/s10877-020-00535-6</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-2344-3694</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1387-1307
ispartof Journal of clinical monitoring and computing, 2021-08, Vol.35 (4), p.771-777
issn 1387-1307
1573-2614
language eng
recordid cdi_hal_primary_oai_HAL_hal_04355509v1
source SpringerLink Journals - AutoHoldings
subjects Acidosis
Anesthesiology
Classification
Critical Care Medicine
Health Sciences
Heart rate
Intensive
Life Sciences
Medicine
Medicine & Public Health
Multivariate analysis
Newborn babies
Original Research
Signal quality
Statistics for Life Sciences
Visual signals
Well being
title Fetal heart rate variability analysis for neonatal acidosis prediction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T03%3A27%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fetal%20heart%20rate%20variability%20analysis%20for%20neonatal%20acidosis%20prediction&rft.jtitle=Journal%20of%20clinical%20monitoring%20and%20computing&rft.au=Gatellier,%20M.-A.&rft.date=2021-08-01&rft.volume=35&rft.issue=4&rft.spage=771&rft.epage=777&rft.pages=771-777&rft.issn=1387-1307&rft.eissn=1573-2614&rft_id=info:doi/10.1007/s10877-020-00535-6&rft_dat=%3Cproquest_hal_p%3E2552759109%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2552759109&rft_id=info:pmid/32451749&rfr_iscdi=true