Insectivorous bats alter their flight and feeding behaviour at ground‐mounted solar farms

Efforts to mitigate the climate crisis result in a green‐green dilemma: the development of renewable energy technology is required worldwide to reduce greenhouse gas emissions but can have negative impacts on biodiversity. Impacts are being documented for wind farms, but effects of solar farms (phot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of applied ecology 2024-02, Vol.61 (2), p.328-339
Hauptverfasser: Barré, Kévin, Baudouin, Alice, Froidevaux, Jérémy S. P., Chartendrault, Vivien, Kerbiriou, Christian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 339
container_issue 2
container_start_page 328
container_title The Journal of applied ecology
container_volume 61
creator Barré, Kévin
Baudouin, Alice
Froidevaux, Jérémy S. P.
Chartendrault, Vivien
Kerbiriou, Christian
description Efforts to mitigate the climate crisis result in a green‐green dilemma: the development of renewable energy technology is required worldwide to reduce greenhouse gas emissions but can have negative impacts on biodiversity. Impacts are being documented for wind farms, but effects of solar farms (photovoltaic power stations) on habitat use of vertebrates remain extremely poorly known. Using insectivorous bats as a biological model for high trophic levels, we tested whether the presence of ground‐mounted solar farms affected flight and feeding behaviour. We assessed behaviour using three‐dimensional flight path reconstruction systems from echolocation calls, via standardised paired sampling of 16 control and 16 solar farm (treatment) sites. We quantified bat flight and feeding behaviour as flight speed, sinuosity of flight trajectories, and the probability of emission of feeding buzzes (acoustic signatures of prey capture attempts), and demonstrated that feeding was characterised by slow, sinuous flight with feeding buzzes. We recorded 15,273 three‐dimensional bat positions, resulting in 1317 flight trajectories. We found strong behavioural responses to ground‐mounted solar farms in two of three bat guilds and five of seven taxa. Specifically, bats shifted their flight towards faster (+10 to +44%) and straighter trajectories (+33%) with lower probability of prey capture attempts (−18 to −39%) at solar farms. Since these changes in flight features are explicit indicators of a decrease in bat feeding behaviour, the implementation of ground‐mounted solar farms is likely to result in reduced feeding habitat quality for bats. Synthesis and applications: The negative effects of solar farms on bat flight and feeding behaviour should be considered when solar energy projects are planned. Research is needed to understand the mechanisms underlying the effects; for example, shading underneath solar panels may reduce plant biomass and therefore insect prey availability. Until exact mechanisms are identified, efforts should be made, first to avoid building solar farms on sites with great feeding potential for bats, and second to offset residual effects by improving the surrounding land and/or solar farms to provide better foraging opportunities. In this way, populations of bats can be supported alongside the generation of renewable energy. Résumé Les efforts d'atténuation de la crise climatique génèrent un dilemme écologique: le développement d'énergies renouvelables est n
doi_str_mv 10.1111/1365-2664.14555
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04350590v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2922698164</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3905-3ed83198987917dff616f9b4ce1fb794d158fcf5f5b6caf48703172b73381de03</originalsourceid><addsrcrecordid>eNqFkLFOwzAQhi0EEqUws1piYkhrx7Fjj1UFtKgSDDAxWE5st67SpNhpUTcegWfkSXAI6sotJ52-73T3A3CN0QjHGmPCaJIylo1wRik9AYPj5BQMEEpxwgXC5-AihDVCSFBCBuBtXgdTtm7f-GYXYKHaAFXVGg_blXEe2sotVy1UtYbWGO3qJSzMSu1ds_NQtXAZtVp_f35tYm-NhqGpVNSU34RLcGZVFczVXx-C1_u7l-ksWTw9zKeTRVISgWhCjOYECy54LnCurWWYWVFkpcG2yEWmMeW2tNTSgpXKZjxHBOdpkRPCsTaIDMFtv3elKrn1bqP8QTbKydlkIbsZyghFVKA9juxNz259874zoZXr-Ekdz5OpSFMmOGZZpMY9VfomBG_scS1GsktbdtnKLlv5m3Y0aG98uMoc_sPl4_Nd7_0AIxyBow</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2922698164</pqid></control><display><type>article</type><title>Insectivorous bats alter their flight and feeding behaviour at ground‐mounted solar farms</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Barré, Kévin ; Baudouin, Alice ; Froidevaux, Jérémy S. P. ; Chartendrault, Vivien ; Kerbiriou, Christian</creator><creatorcontrib>Barré, Kévin ; Baudouin, Alice ; Froidevaux, Jérémy S. P. ; Chartendrault, Vivien ; Kerbiriou, Christian</creatorcontrib><description>Efforts to mitigate the climate crisis result in a green‐green dilemma: the development of renewable energy technology is required worldwide to reduce greenhouse gas emissions but can have negative impacts on biodiversity. Impacts are being documented for wind farms, but effects of solar farms (photovoltaic power stations) on habitat use of vertebrates remain extremely poorly known. Using insectivorous bats as a biological model for high trophic levels, we tested whether the presence of ground‐mounted solar farms affected flight and feeding behaviour. We assessed behaviour using three‐dimensional flight path reconstruction systems from echolocation calls, via standardised paired sampling of 16 control and 16 solar farm (treatment) sites. We quantified bat flight and feeding behaviour as flight speed, sinuosity of flight trajectories, and the probability of emission of feeding buzzes (acoustic signatures of prey capture attempts), and demonstrated that feeding was characterised by slow, sinuous flight with feeding buzzes. We recorded 15,273 three‐dimensional bat positions, resulting in 1317 flight trajectories. We found strong behavioural responses to ground‐mounted solar farms in two of three bat guilds and five of seven taxa. Specifically, bats shifted their flight towards faster (+10 to +44%) and straighter trajectories (+33%) with lower probability of prey capture attempts (−18 to −39%) at solar farms. Since these changes in flight features are explicit indicators of a decrease in bat feeding behaviour, the implementation of ground‐mounted solar farms is likely to result in reduced feeding habitat quality for bats. Synthesis and applications: The negative effects of solar farms on bat flight and feeding behaviour should be considered when solar energy projects are planned. Research is needed to understand the mechanisms underlying the effects; for example, shading underneath solar panels may reduce plant biomass and therefore insect prey availability. Until exact mechanisms are identified, efforts should be made, first to avoid building solar farms on sites with great feeding potential for bats, and second to offset residual effects by improving the surrounding land and/or solar farms to provide better foraging opportunities. In this way, populations of bats can be supported alongside the generation of renewable energy. Résumé Les efforts d'atténuation de la crise climatique génèrent un dilemme écologique: le développement d'énergies renouvelables est nécessaire pour réduire les émissions de gaz à effet de serre, mais il peut avoir des impacts négatifs sur la biodiversité. Si les impacts des parcs éoliens sont documentés, les effets des fermes solaires (centrales photovoltaïques) sur l'usage des habitats par les vertébrés restent extrêmement peu connus. En utilisant les chauves‐souris insectivores comme modèle biologique situé sur des niveaux trophiques élevés, nous avons testé si la présence de fermes solaires au sol affectait le comportement de vol et de chasse. Nous avons évalué le comportement en utilisant des systèmes de reconstruction des trajectoires de vol en trois dimensions à partir des cris d'écholocation, par le biais d'un échantillonnage standardisé par paires de 16 sites témoins et 16 sites sur ferme solaire (traitement). Nous avons quantifié le comportement de vol et de chasse des chauves‐souris à travers la vitesse de vol, la sinuosité des trajectoires, et la probabilité d'émission de bourdonnements de chasse (signatures acoustiques des tentatives de capture de proies), tout en démontrant que le comportement de chasse était caractérisé par des vols lents et sinueux avec des bourdonnements. Nous avons enregistré 15,273 positions tridimensionnelles de chauves‐souris, pour un total de 1317 trajectoires de vol. Nous avons trouvé de fortes réponses comportementales aux fermes solaires au sol pour deux des trois guildes de chauves‐souris et cinq des sept taxons étudiés. Plus précisément, les chauves‐souris modifiaient leur comportement de vol vers des trajectoires plus rapides (+10 à +44%) et plus linéaires (+33%) avec une probabilité plus faible de tentatives de capture de proies (−18 à −39%) au sein des fermes solaires. Étant donné que ces changements de caractéristiques de vol sont des indicateurs explicites d'une diminution du comportement de chasse chez les chauves‐souris, l'implantation de fermes solaires au sol est susceptible d'entraîner une réduction de la qualité des habitats de chasse pour les chauves‐souris. Synthèse et applications: Les effets négatifs des fermes solaires sur le comportement de vol et de chasse des chauves‐souris devraient être pris en compte lorsque des projets d'énergie solaire sont planifiés. Des recherches sont nécessaires pour comprendre les mécanismes qui sous‐tendent ces effets; par exemple, l'ombrage sous les panneaux solaires peut réduire la biomasse végétale et donc la disponibilité en insectes. Jusqu'à ce que les mécanismes exacts soient identifiés, des efforts devraient être faits, premièrement pour éviter de construire des fermes solaires sur des sites ayant un potentiel important pour l'alimentation des chauves‐souris, et deuxièmement pour compenser les effets résiduels en améliorant les zones environnantes et/ou les fermes solaires de sorte à augmenter le potentiel d'alimentation. De cette manière, les populations de chauves‐souris pourraient être maintenues tout en produisant de l'énergie renouvelable. The negative effects of solar farms on bat flight and feeding behaviour should be considered when solar energy projects are planned. Research is needed to understand the mechanisms underlying the effects; for example, shading underneath solar panels may reduce plant biomass and therefore insect prey availability. Until exact mechanisms are identified, efforts should be made, first to avoid building solar farms on sites with great feeding potential for bats, and second to offset residual effects by improving the surrounding land and/or solar farms to provide better foraging opportunities. In this way, populations of bats can be supported alongside the generation of renewable energy.</description><identifier>ISSN: 0021-8901</identifier><identifier>EISSN: 1365-2664</identifier><identifier>DOI: 10.1111/1365-2664.14555</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Airspeed ; Alternative energy sources ; Bats ; Biodiversity ; Biological models (mathematics) ; Chiroptera ; Echolocation ; Ecology, environment ; Emissions ; Emissions control ; Energy technology ; Environmental quality ; Farm buildings ; Feeding behavior ; feeding buzz ; Flight ; Flight behavior ; foraging behaviour ; functionality loss ; Greenhouse gases ; green‐green dilemma ; Guilds ; Habitat utilization ; Habitats ; Insectivores ; Insects ; Life Sciences ; movement ; Photovoltaics ; Plant biomass ; Populations ; Power plants ; Prey ; Reconstruction ; Renewable energy ; Renewable energy technologies ; Renewable resources ; renewable solar energy ; Residual effects ; Signatures ; Sinuosity ; Solar energy ; Solar farms ; Solar panels ; Solar power generation ; three‐dimensional (3D) acoustic tracking ; Trajectories ; Trophic levels ; Vertebrates ; Wind effects ; Wind farms ; Wind power</subject><ispartof>The Journal of applied ecology, 2024-02, Vol.61 (2), p.328-339</ispartof><rights>2023 The Authors. published by John Wiley &amp; Sons Ltd on behalf of British Ecological Society.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3905-3ed83198987917dff616f9b4ce1fb794d158fcf5f5b6caf48703172b73381de03</citedby><cites>FETCH-LOGICAL-c3905-3ed83198987917dff616f9b4ce1fb794d158fcf5f5b6caf48703172b73381de03</cites><orcidid>0000-0001-6850-4879 ; 0000-0001-6080-4762 ; 0000-0001-5368-4053</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1365-2664.14555$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1365-2664.14555$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04350590$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Barré, Kévin</creatorcontrib><creatorcontrib>Baudouin, Alice</creatorcontrib><creatorcontrib>Froidevaux, Jérémy S. P.</creatorcontrib><creatorcontrib>Chartendrault, Vivien</creatorcontrib><creatorcontrib>Kerbiriou, Christian</creatorcontrib><title>Insectivorous bats alter their flight and feeding behaviour at ground‐mounted solar farms</title><title>The Journal of applied ecology</title><description>Efforts to mitigate the climate crisis result in a green‐green dilemma: the development of renewable energy technology is required worldwide to reduce greenhouse gas emissions but can have negative impacts on biodiversity. Impacts are being documented for wind farms, but effects of solar farms (photovoltaic power stations) on habitat use of vertebrates remain extremely poorly known. Using insectivorous bats as a biological model for high trophic levels, we tested whether the presence of ground‐mounted solar farms affected flight and feeding behaviour. We assessed behaviour using three‐dimensional flight path reconstruction systems from echolocation calls, via standardised paired sampling of 16 control and 16 solar farm (treatment) sites. We quantified bat flight and feeding behaviour as flight speed, sinuosity of flight trajectories, and the probability of emission of feeding buzzes (acoustic signatures of prey capture attempts), and demonstrated that feeding was characterised by slow, sinuous flight with feeding buzzes. We recorded 15,273 three‐dimensional bat positions, resulting in 1317 flight trajectories. We found strong behavioural responses to ground‐mounted solar farms in two of three bat guilds and five of seven taxa. Specifically, bats shifted their flight towards faster (+10 to +44%) and straighter trajectories (+33%) with lower probability of prey capture attempts (−18 to −39%) at solar farms. Since these changes in flight features are explicit indicators of a decrease in bat feeding behaviour, the implementation of ground‐mounted solar farms is likely to result in reduced feeding habitat quality for bats. Synthesis and applications: The negative effects of solar farms on bat flight and feeding behaviour should be considered when solar energy projects are planned. Research is needed to understand the mechanisms underlying the effects; for example, shading underneath solar panels may reduce plant biomass and therefore insect prey availability. Until exact mechanisms are identified, efforts should be made, first to avoid building solar farms on sites with great feeding potential for bats, and second to offset residual effects by improving the surrounding land and/or solar farms to provide better foraging opportunities. In this way, populations of bats can be supported alongside the generation of renewable energy. Résumé Les efforts d'atténuation de la crise climatique génèrent un dilemme écologique: le développement d'énergies renouvelables est nécessaire pour réduire les émissions de gaz à effet de serre, mais il peut avoir des impacts négatifs sur la biodiversité. Si les impacts des parcs éoliens sont documentés, les effets des fermes solaires (centrales photovoltaïques) sur l'usage des habitats par les vertébrés restent extrêmement peu connus. En utilisant les chauves‐souris insectivores comme modèle biologique situé sur des niveaux trophiques élevés, nous avons testé si la présence de fermes solaires au sol affectait le comportement de vol et de chasse. Nous avons évalué le comportement en utilisant des systèmes de reconstruction des trajectoires de vol en trois dimensions à partir des cris d'écholocation, par le biais d'un échantillonnage standardisé par paires de 16 sites témoins et 16 sites sur ferme solaire (traitement). Nous avons quantifié le comportement de vol et de chasse des chauves‐souris à travers la vitesse de vol, la sinuosité des trajectoires, et la probabilité d'émission de bourdonnements de chasse (signatures acoustiques des tentatives de capture de proies), tout en démontrant que le comportement de chasse était caractérisé par des vols lents et sinueux avec des bourdonnements. Nous avons enregistré 15,273 positions tridimensionnelles de chauves‐souris, pour un total de 1317 trajectoires de vol. Nous avons trouvé de fortes réponses comportementales aux fermes solaires au sol pour deux des trois guildes de chauves‐souris et cinq des sept taxons étudiés. Plus précisément, les chauves‐souris modifiaient leur comportement de vol vers des trajectoires plus rapides (+10 à +44%) et plus linéaires (+33%) avec une probabilité plus faible de tentatives de capture de proies (−18 à −39%) au sein des fermes solaires. Étant donné que ces changements de caractéristiques de vol sont des indicateurs explicites d'une diminution du comportement de chasse chez les chauves‐souris, l'implantation de fermes solaires au sol est susceptible d'entraîner une réduction de la qualité des habitats de chasse pour les chauves‐souris. Synthèse et applications: Les effets négatifs des fermes solaires sur le comportement de vol et de chasse des chauves‐souris devraient être pris en compte lorsque des projets d'énergie solaire sont planifiés. Des recherches sont nécessaires pour comprendre les mécanismes qui sous‐tendent ces effets; par exemple, l'ombrage sous les panneaux solaires peut réduire la biomasse végétale et donc la disponibilité en insectes. Jusqu'à ce que les mécanismes exacts soient identifiés, des efforts devraient être faits, premièrement pour éviter de construire des fermes solaires sur des sites ayant un potentiel important pour l'alimentation des chauves‐souris, et deuxièmement pour compenser les effets résiduels en améliorant les zones environnantes et/ou les fermes solaires de sorte à augmenter le potentiel d'alimentation. De cette manière, les populations de chauves‐souris pourraient être maintenues tout en produisant de l'énergie renouvelable. The negative effects of solar farms on bat flight and feeding behaviour should be considered when solar energy projects are planned. Research is needed to understand the mechanisms underlying the effects; for example, shading underneath solar panels may reduce plant biomass and therefore insect prey availability. Until exact mechanisms are identified, efforts should be made, first to avoid building solar farms on sites with great feeding potential for bats, and second to offset residual effects by improving the surrounding land and/or solar farms to provide better foraging opportunities. In this way, populations of bats can be supported alongside the generation of renewable energy.</description><subject>Airspeed</subject><subject>Alternative energy sources</subject><subject>Bats</subject><subject>Biodiversity</subject><subject>Biological models (mathematics)</subject><subject>Chiroptera</subject><subject>Echolocation</subject><subject>Ecology, environment</subject><subject>Emissions</subject><subject>Emissions control</subject><subject>Energy technology</subject><subject>Environmental quality</subject><subject>Farm buildings</subject><subject>Feeding behavior</subject><subject>feeding buzz</subject><subject>Flight</subject><subject>Flight behavior</subject><subject>foraging behaviour</subject><subject>functionality loss</subject><subject>Greenhouse gases</subject><subject>green‐green dilemma</subject><subject>Guilds</subject><subject>Habitat utilization</subject><subject>Habitats</subject><subject>Insectivores</subject><subject>Insects</subject><subject>Life Sciences</subject><subject>movement</subject><subject>Photovoltaics</subject><subject>Plant biomass</subject><subject>Populations</subject><subject>Power plants</subject><subject>Prey</subject><subject>Reconstruction</subject><subject>Renewable energy</subject><subject>Renewable energy technologies</subject><subject>Renewable resources</subject><subject>renewable solar energy</subject><subject>Residual effects</subject><subject>Signatures</subject><subject>Sinuosity</subject><subject>Solar energy</subject><subject>Solar farms</subject><subject>Solar panels</subject><subject>Solar power generation</subject><subject>three‐dimensional (3D) acoustic tracking</subject><subject>Trajectories</subject><subject>Trophic levels</subject><subject>Vertebrates</subject><subject>Wind effects</subject><subject>Wind farms</subject><subject>Wind power</subject><issn>0021-8901</issn><issn>1365-2664</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkLFOwzAQhi0EEqUws1piYkhrx7Fjj1UFtKgSDDAxWE5st67SpNhpUTcegWfkSXAI6sotJ52-73T3A3CN0QjHGmPCaJIylo1wRik9AYPj5BQMEEpxwgXC5-AihDVCSFBCBuBtXgdTtm7f-GYXYKHaAFXVGg_blXEe2sotVy1UtYbWGO3qJSzMSu1ds_NQtXAZtVp_f35tYm-NhqGpVNSU34RLcGZVFczVXx-C1_u7l-ksWTw9zKeTRVISgWhCjOYECy54LnCurWWYWVFkpcG2yEWmMeW2tNTSgpXKZjxHBOdpkRPCsTaIDMFtv3elKrn1bqP8QTbKydlkIbsZyghFVKA9juxNz259874zoZXr-Ekdz5OpSFMmOGZZpMY9VfomBG_scS1GsktbdtnKLlv5m3Y0aG98uMoc_sPl4_Nd7_0AIxyBow</recordid><startdate>202402</startdate><enddate>202402</enddate><creator>Barré, Kévin</creator><creator>Baudouin, Alice</creator><creator>Froidevaux, Jérémy S. P.</creator><creator>Chartendrault, Vivien</creator><creator>Kerbiriou, Christian</creator><general>Blackwell Publishing Ltd</general><general>Wiley</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7SS</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-6850-4879</orcidid><orcidid>https://orcid.org/0000-0001-6080-4762</orcidid><orcidid>https://orcid.org/0000-0001-5368-4053</orcidid></search><sort><creationdate>202402</creationdate><title>Insectivorous bats alter their flight and feeding behaviour at ground‐mounted solar farms</title><author>Barré, Kévin ; Baudouin, Alice ; Froidevaux, Jérémy S. P. ; Chartendrault, Vivien ; Kerbiriou, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3905-3ed83198987917dff616f9b4ce1fb794d158fcf5f5b6caf48703172b73381de03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Airspeed</topic><topic>Alternative energy sources</topic><topic>Bats</topic><topic>Biodiversity</topic><topic>Biological models (mathematics)</topic><topic>Chiroptera</topic><topic>Echolocation</topic><topic>Ecology, environment</topic><topic>Emissions</topic><topic>Emissions control</topic><topic>Energy technology</topic><topic>Environmental quality</topic><topic>Farm buildings</topic><topic>Feeding behavior</topic><topic>feeding buzz</topic><topic>Flight</topic><topic>Flight behavior</topic><topic>foraging behaviour</topic><topic>functionality loss</topic><topic>Greenhouse gases</topic><topic>green‐green dilemma</topic><topic>Guilds</topic><topic>Habitat utilization</topic><topic>Habitats</topic><topic>Insectivores</topic><topic>Insects</topic><topic>Life Sciences</topic><topic>movement</topic><topic>Photovoltaics</topic><topic>Plant biomass</topic><topic>Populations</topic><topic>Power plants</topic><topic>Prey</topic><topic>Reconstruction</topic><topic>Renewable energy</topic><topic>Renewable energy technologies</topic><topic>Renewable resources</topic><topic>renewable solar energy</topic><topic>Residual effects</topic><topic>Signatures</topic><topic>Sinuosity</topic><topic>Solar energy</topic><topic>Solar farms</topic><topic>Solar panels</topic><topic>Solar power generation</topic><topic>three‐dimensional (3D) acoustic tracking</topic><topic>Trajectories</topic><topic>Trophic levels</topic><topic>Vertebrates</topic><topic>Wind effects</topic><topic>Wind farms</topic><topic>Wind power</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barré, Kévin</creatorcontrib><creatorcontrib>Baudouin, Alice</creatorcontrib><creatorcontrib>Froidevaux, Jérémy S. P.</creatorcontrib><creatorcontrib>Chartendrault, Vivien</creatorcontrib><creatorcontrib>Kerbiriou, Christian</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>The Journal of applied ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barré, Kévin</au><au>Baudouin, Alice</au><au>Froidevaux, Jérémy S. P.</au><au>Chartendrault, Vivien</au><au>Kerbiriou, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insectivorous bats alter their flight and feeding behaviour at ground‐mounted solar farms</atitle><jtitle>The Journal of applied ecology</jtitle><date>2024-02</date><risdate>2024</risdate><volume>61</volume><issue>2</issue><spage>328</spage><epage>339</epage><pages>328-339</pages><issn>0021-8901</issn><eissn>1365-2664</eissn><abstract>Efforts to mitigate the climate crisis result in a green‐green dilemma: the development of renewable energy technology is required worldwide to reduce greenhouse gas emissions but can have negative impacts on biodiversity. Impacts are being documented for wind farms, but effects of solar farms (photovoltaic power stations) on habitat use of vertebrates remain extremely poorly known. Using insectivorous bats as a biological model for high trophic levels, we tested whether the presence of ground‐mounted solar farms affected flight and feeding behaviour. We assessed behaviour using three‐dimensional flight path reconstruction systems from echolocation calls, via standardised paired sampling of 16 control and 16 solar farm (treatment) sites. We quantified bat flight and feeding behaviour as flight speed, sinuosity of flight trajectories, and the probability of emission of feeding buzzes (acoustic signatures of prey capture attempts), and demonstrated that feeding was characterised by slow, sinuous flight with feeding buzzes. We recorded 15,273 three‐dimensional bat positions, resulting in 1317 flight trajectories. We found strong behavioural responses to ground‐mounted solar farms in two of three bat guilds and five of seven taxa. Specifically, bats shifted their flight towards faster (+10 to +44%) and straighter trajectories (+33%) with lower probability of prey capture attempts (−18 to −39%) at solar farms. Since these changes in flight features are explicit indicators of a decrease in bat feeding behaviour, the implementation of ground‐mounted solar farms is likely to result in reduced feeding habitat quality for bats. Synthesis and applications: The negative effects of solar farms on bat flight and feeding behaviour should be considered when solar energy projects are planned. Research is needed to understand the mechanisms underlying the effects; for example, shading underneath solar panels may reduce plant biomass and therefore insect prey availability. Until exact mechanisms are identified, efforts should be made, first to avoid building solar farms on sites with great feeding potential for bats, and second to offset residual effects by improving the surrounding land and/or solar farms to provide better foraging opportunities. In this way, populations of bats can be supported alongside the generation of renewable energy. Résumé Les efforts d'atténuation de la crise climatique génèrent un dilemme écologique: le développement d'énergies renouvelables est nécessaire pour réduire les émissions de gaz à effet de serre, mais il peut avoir des impacts négatifs sur la biodiversité. Si les impacts des parcs éoliens sont documentés, les effets des fermes solaires (centrales photovoltaïques) sur l'usage des habitats par les vertébrés restent extrêmement peu connus. En utilisant les chauves‐souris insectivores comme modèle biologique situé sur des niveaux trophiques élevés, nous avons testé si la présence de fermes solaires au sol affectait le comportement de vol et de chasse. Nous avons évalué le comportement en utilisant des systèmes de reconstruction des trajectoires de vol en trois dimensions à partir des cris d'écholocation, par le biais d'un échantillonnage standardisé par paires de 16 sites témoins et 16 sites sur ferme solaire (traitement). Nous avons quantifié le comportement de vol et de chasse des chauves‐souris à travers la vitesse de vol, la sinuosité des trajectoires, et la probabilité d'émission de bourdonnements de chasse (signatures acoustiques des tentatives de capture de proies), tout en démontrant que le comportement de chasse était caractérisé par des vols lents et sinueux avec des bourdonnements. Nous avons enregistré 15,273 positions tridimensionnelles de chauves‐souris, pour un total de 1317 trajectoires de vol. Nous avons trouvé de fortes réponses comportementales aux fermes solaires au sol pour deux des trois guildes de chauves‐souris et cinq des sept taxons étudiés. Plus précisément, les chauves‐souris modifiaient leur comportement de vol vers des trajectoires plus rapides (+10 à +44%) et plus linéaires (+33%) avec une probabilité plus faible de tentatives de capture de proies (−18 à −39%) au sein des fermes solaires. Étant donné que ces changements de caractéristiques de vol sont des indicateurs explicites d'une diminution du comportement de chasse chez les chauves‐souris, l'implantation de fermes solaires au sol est susceptible d'entraîner une réduction de la qualité des habitats de chasse pour les chauves‐souris. Synthèse et applications: Les effets négatifs des fermes solaires sur le comportement de vol et de chasse des chauves‐souris devraient être pris en compte lorsque des projets d'énergie solaire sont planifiés. Des recherches sont nécessaires pour comprendre les mécanismes qui sous‐tendent ces effets; par exemple, l'ombrage sous les panneaux solaires peut réduire la biomasse végétale et donc la disponibilité en insectes. Jusqu'à ce que les mécanismes exacts soient identifiés, des efforts devraient être faits, premièrement pour éviter de construire des fermes solaires sur des sites ayant un potentiel important pour l'alimentation des chauves‐souris, et deuxièmement pour compenser les effets résiduels en améliorant les zones environnantes et/ou les fermes solaires de sorte à augmenter le potentiel d'alimentation. De cette manière, les populations de chauves‐souris pourraient être maintenues tout en produisant de l'énergie renouvelable. The negative effects of solar farms on bat flight and feeding behaviour should be considered when solar energy projects are planned. Research is needed to understand the mechanisms underlying the effects; for example, shading underneath solar panels may reduce plant biomass and therefore insect prey availability. Until exact mechanisms are identified, efforts should be made, first to avoid building solar farms on sites with great feeding potential for bats, and second to offset residual effects by improving the surrounding land and/or solar farms to provide better foraging opportunities. In this way, populations of bats can be supported alongside the generation of renewable energy.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/1365-2664.14555</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6850-4879</orcidid><orcidid>https://orcid.org/0000-0001-6080-4762</orcidid><orcidid>https://orcid.org/0000-0001-5368-4053</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8901
ispartof The Journal of applied ecology, 2024-02, Vol.61 (2), p.328-339
issn 0021-8901
1365-2664
language eng
recordid cdi_hal_primary_oai_HAL_hal_04350590v1
source Wiley Online Library Journals Frontfile Complete
subjects Airspeed
Alternative energy sources
Bats
Biodiversity
Biological models (mathematics)
Chiroptera
Echolocation
Ecology, environment
Emissions
Emissions control
Energy technology
Environmental quality
Farm buildings
Feeding behavior
feeding buzz
Flight
Flight behavior
foraging behaviour
functionality loss
Greenhouse gases
green‐green dilemma
Guilds
Habitat utilization
Habitats
Insectivores
Insects
Life Sciences
movement
Photovoltaics
Plant biomass
Populations
Power plants
Prey
Reconstruction
Renewable energy
Renewable energy technologies
Renewable resources
renewable solar energy
Residual effects
Signatures
Sinuosity
Solar energy
Solar farms
Solar panels
Solar power generation
three‐dimensional (3D) acoustic tracking
Trajectories
Trophic levels
Vertebrates
Wind effects
Wind farms
Wind power
title Insectivorous bats alter their flight and feeding behaviour at ground‐mounted solar farms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T13%3A16%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insectivorous%20bats%20alter%20their%20flight%20and%20feeding%20behaviour%20at%20ground%E2%80%90mounted%20solar%20farms&rft.jtitle=The%20Journal%20of%20applied%20ecology&rft.au=Barr%C3%A9,%20K%C3%A9vin&rft.date=2024-02&rft.volume=61&rft.issue=2&rft.spage=328&rft.epage=339&rft.pages=328-339&rft.issn=0021-8901&rft.eissn=1365-2664&rft_id=info:doi/10.1111/1365-2664.14555&rft_dat=%3Cproquest_hal_p%3E2922698164%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2922698164&rft_id=info:pmid/&rfr_iscdi=true