Dipolar coupled core-shell perpendicular shape anisotropy MTJ with enhanced write speed and reduced cross-talk

The concept of Perpendicular Shape-Anisotropy Spin-Transfer-Torque Magnetic Random-Access Memory tackles the downsize scalability limit of conventional ultrathin magnetic tunnel junctions (MTJ) below sub-20 nm technological nodes. This concept uses a thicker storage layer with a vertical aspect rati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review applied 2024-03, Vol.21
Hauptverfasser: Caçoilo, N., Buda-Prejbeanu, L. D., Dieny, B., Fruchart, Olivier, Prejbeanu, I.L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Physical review applied
container_volume 21
creator Caçoilo, N.
Buda-Prejbeanu, L. D.
Dieny, B.
Fruchart, Olivier
Prejbeanu, I.L.
description The concept of Perpendicular Shape-Anisotropy Spin-Transfer-Torque Magnetic Random-Access Memory tackles the downsize scalability limit of conventional ultrathin magnetic tunnel junctions (MTJ) below sub-20 nm technological nodes. This concept uses a thicker storage layer with a vertical aspect ratio, enhancing the thermal stability factor thanks to the favorable contribution of the shape anisotropy. However, the increased aspect ratio comes with an increase in switching time under applied voltage and the cross-over to non-uniform reversal mechanism at higher aspect ratio, limiting the gain in scalability. Additionally, the larger volume of the magnetic cell significantly increases the stray field acting on the neighboring devices compared to thin MTJs. In this work, we propose the use of a dipolar-coupled core-shell system as a storage layer. This improves both bottlenecks, as predicted by micromagnetic simulations for magnetisation reversal, and a macrospin model to estimate the stray field in a dense array.
doi_str_mv 10.1103/PhysRevApplied.21.044034
format Article
fullrecord <record><control><sourceid>hal</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04335929v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_04335929v1</sourcerecordid><originalsourceid>FETCH-hal_primary_oai_HAL_hal_04335929v13</originalsourceid><addsrcrecordid>eNqVi81KxDAURoMoOOi8Q7YuWm-aDtrl4A-DOCAy-3JpryQak0tuO0Pf3hZcuHV1Pg7nU0obKI0Be_vmJnmn45Y5eOrLypRQ12DrM7WqrDXFHZjm_M--VGuRTwAwptrAPaxUfPScAmbdpZED9TMzFeIoBM2UmWLvu3EJxCGTxuglDTnxpPeHF33yg9MUHcZu_p6yH0gL07wx9jpTPy6-y0mkGDB8XauLDwxC619eqZvnp8PDrnAYWs7-G_PUJvTtbvvaLg5qazdN1RyN_U_7A6lCWVM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Dipolar coupled core-shell perpendicular shape anisotropy MTJ with enhanced write speed and reduced cross-talk</title><source>American Physical Society Journals</source><creator>Caçoilo, N. ; Buda-Prejbeanu, L. D. ; Dieny, B. ; Fruchart, Olivier ; Prejbeanu, I.L.</creator><creatorcontrib>Caçoilo, N. ; Buda-Prejbeanu, L. D. ; Dieny, B. ; Fruchart, Olivier ; Prejbeanu, I.L.</creatorcontrib><description>The concept of Perpendicular Shape-Anisotropy Spin-Transfer-Torque Magnetic Random-Access Memory tackles the downsize scalability limit of conventional ultrathin magnetic tunnel junctions (MTJ) below sub-20 nm technological nodes. This concept uses a thicker storage layer with a vertical aspect ratio, enhancing the thermal stability factor thanks to the favorable contribution of the shape anisotropy. However, the increased aspect ratio comes with an increase in switching time under applied voltage and the cross-over to non-uniform reversal mechanism at higher aspect ratio, limiting the gain in scalability. Additionally, the larger volume of the magnetic cell significantly increases the stray field acting on the neighboring devices compared to thin MTJs. In this work, we propose the use of a dipolar-coupled core-shell system as a storage layer. This improves both bottlenecks, as predicted by micromagnetic simulations for magnetisation reversal, and a macrospin model to estimate the stray field in a dense array.</description><identifier>ISSN: 2331-7019</identifier><identifier>EISSN: 2331-7019</identifier><identifier>DOI: 10.1103/PhysRevApplied.21.044034</identifier><language>eng</language><publisher>American Physical Society</publisher><subject>Condensed Matter ; Materials Science ; Physics</subject><ispartof>Physical review applied, 2024-03, Vol.21</ispartof><rights>Attribution</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-0575-5301 ; 0000-0001-7717-5229 ; 0000-0001-8847-2034 ; 0000-0002-6105-151X ; 0000-0001-6577-032X ; 0000-0002-0575-5301 ; 0000-0002-6105-151X ; 0000-0001-7717-5229 ; 0000-0001-6577-032X ; 0000-0001-8847-2034</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04335929$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Caçoilo, N.</creatorcontrib><creatorcontrib>Buda-Prejbeanu, L. D.</creatorcontrib><creatorcontrib>Dieny, B.</creatorcontrib><creatorcontrib>Fruchart, Olivier</creatorcontrib><creatorcontrib>Prejbeanu, I.L.</creatorcontrib><title>Dipolar coupled core-shell perpendicular shape anisotropy MTJ with enhanced write speed and reduced cross-talk</title><title>Physical review applied</title><description>The concept of Perpendicular Shape-Anisotropy Spin-Transfer-Torque Magnetic Random-Access Memory tackles the downsize scalability limit of conventional ultrathin magnetic tunnel junctions (MTJ) below sub-20 nm technological nodes. This concept uses a thicker storage layer with a vertical aspect ratio, enhancing the thermal stability factor thanks to the favorable contribution of the shape anisotropy. However, the increased aspect ratio comes with an increase in switching time under applied voltage and the cross-over to non-uniform reversal mechanism at higher aspect ratio, limiting the gain in scalability. Additionally, the larger volume of the magnetic cell significantly increases the stray field acting on the neighboring devices compared to thin MTJs. In this work, we propose the use of a dipolar-coupled core-shell system as a storage layer. This improves both bottlenecks, as predicted by micromagnetic simulations for magnetisation reversal, and a macrospin model to estimate the stray field in a dense array.</description><subject>Condensed Matter</subject><subject>Materials Science</subject><subject>Physics</subject><issn>2331-7019</issn><issn>2331-7019</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqVi81KxDAURoMoOOi8Q7YuWm-aDtrl4A-DOCAy-3JpryQak0tuO0Pf3hZcuHV1Pg7nU0obKI0Be_vmJnmn45Y5eOrLypRQ12DrM7WqrDXFHZjm_M--VGuRTwAwptrAPaxUfPScAmbdpZED9TMzFeIoBM2UmWLvu3EJxCGTxuglDTnxpPeHF33yg9MUHcZu_p6yH0gL07wx9jpTPy6-y0mkGDB8XauLDwxC619eqZvnp8PDrnAYWs7-G_PUJvTtbvvaLg5qazdN1RyN_U_7A6lCWVM</recordid><startdate>20240320</startdate><enddate>20240320</enddate><creator>Caçoilo, N.</creator><creator>Buda-Prejbeanu, L. D.</creator><creator>Dieny, B.</creator><creator>Fruchart, Olivier</creator><creator>Prejbeanu, I.L.</creator><general>American Physical Society</general><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-0575-5301</orcidid><orcidid>https://orcid.org/0000-0001-7717-5229</orcidid><orcidid>https://orcid.org/0000-0001-8847-2034</orcidid><orcidid>https://orcid.org/0000-0002-6105-151X</orcidid><orcidid>https://orcid.org/0000-0001-6577-032X</orcidid><orcidid>https://orcid.org/0000-0002-0575-5301</orcidid><orcidid>https://orcid.org/0000-0002-6105-151X</orcidid><orcidid>https://orcid.org/0000-0001-7717-5229</orcidid><orcidid>https://orcid.org/0000-0001-6577-032X</orcidid><orcidid>https://orcid.org/0000-0001-8847-2034</orcidid></search><sort><creationdate>20240320</creationdate><title>Dipolar coupled core-shell perpendicular shape anisotropy MTJ with enhanced write speed and reduced cross-talk</title><author>Caçoilo, N. ; Buda-Prejbeanu, L. D. ; Dieny, B. ; Fruchart, Olivier ; Prejbeanu, I.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-hal_primary_oai_HAL_hal_04335929v13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Condensed Matter</topic><topic>Materials Science</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caçoilo, N.</creatorcontrib><creatorcontrib>Buda-Prejbeanu, L. D.</creatorcontrib><creatorcontrib>Dieny, B.</creatorcontrib><creatorcontrib>Fruchart, Olivier</creatorcontrib><creatorcontrib>Prejbeanu, I.L.</creatorcontrib><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Physical review applied</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Caçoilo, N.</au><au>Buda-Prejbeanu, L. D.</au><au>Dieny, B.</au><au>Fruchart, Olivier</au><au>Prejbeanu, I.L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dipolar coupled core-shell perpendicular shape anisotropy MTJ with enhanced write speed and reduced cross-talk</atitle><jtitle>Physical review applied</jtitle><date>2024-03-20</date><risdate>2024</risdate><volume>21</volume><issn>2331-7019</issn><eissn>2331-7019</eissn><abstract>The concept of Perpendicular Shape-Anisotropy Spin-Transfer-Torque Magnetic Random-Access Memory tackles the downsize scalability limit of conventional ultrathin magnetic tunnel junctions (MTJ) below sub-20 nm technological nodes. This concept uses a thicker storage layer with a vertical aspect ratio, enhancing the thermal stability factor thanks to the favorable contribution of the shape anisotropy. However, the increased aspect ratio comes with an increase in switching time under applied voltage and the cross-over to non-uniform reversal mechanism at higher aspect ratio, limiting the gain in scalability. Additionally, the larger volume of the magnetic cell significantly increases the stray field acting on the neighboring devices compared to thin MTJs. In this work, we propose the use of a dipolar-coupled core-shell system as a storage layer. This improves both bottlenecks, as predicted by micromagnetic simulations for magnetisation reversal, and a macrospin model to estimate the stray field in a dense array.</abstract><pub>American Physical Society</pub><doi>10.1103/PhysRevApplied.21.044034</doi><orcidid>https://orcid.org/0000-0002-0575-5301</orcidid><orcidid>https://orcid.org/0000-0001-7717-5229</orcidid><orcidid>https://orcid.org/0000-0001-8847-2034</orcidid><orcidid>https://orcid.org/0000-0002-6105-151X</orcidid><orcidid>https://orcid.org/0000-0001-6577-032X</orcidid><orcidid>https://orcid.org/0000-0002-0575-5301</orcidid><orcidid>https://orcid.org/0000-0002-6105-151X</orcidid><orcidid>https://orcid.org/0000-0001-7717-5229</orcidid><orcidid>https://orcid.org/0000-0001-6577-032X</orcidid><orcidid>https://orcid.org/0000-0001-8847-2034</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2331-7019
ispartof Physical review applied, 2024-03, Vol.21
issn 2331-7019
2331-7019
language eng
recordid cdi_hal_primary_oai_HAL_hal_04335929v1
source American Physical Society Journals
subjects Condensed Matter
Materials Science
Physics
title Dipolar coupled core-shell perpendicular shape anisotropy MTJ with enhanced write speed and reduced cross-talk
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T02%3A59%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dipolar%20coupled%20core-shell%20perpendicular%20shape%20anisotropy%20MTJ%20with%20enhanced%20write%20speed%20and%20reduced%20cross-talk&rft.jtitle=Physical%20review%20applied&rft.au=Ca%C3%A7oilo,%20N.&rft.date=2024-03-20&rft.volume=21&rft.issn=2331-7019&rft.eissn=2331-7019&rft_id=info:doi/10.1103/PhysRevApplied.21.044034&rft_dat=%3Chal%3Eoai_HAL_hal_04335929v1%3C/hal%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true