Core-Level Binding Energy Shifts in Ultrathin Alkali-Halide Films on Metals: KCl on Ag(100)
We present an experimental and theoretical analysis of the core-level binding energy shifts in metal-supported ultrathin potassium chloride (KCl) films, i.e., a case from a broader class of few-atom-thick, wide-band gap insulating layers that is increasingly used in nanosciences and nanotechnologies...
Gespeichert in:
Veröffentlicht in: | Journal of physical chemistry. C 2023-12, Vol.127 (50), p.24253-24265 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 24265 |
---|---|
container_issue | 50 |
container_start_page | 24253 |
container_title | Journal of physical chemistry. C |
container_volume | 127 |
creator | Le Moal, Séverine Krieger, Ina Kremring, Roman Weiß, Simon Yang, Xiaosheng Soubatch, Serguei Tautz, F. Stefan Silly, Mathieu Borisov, Andrei G. Sokolowski, Moritz Le Moal, Eric |
description | We present an experimental and theoretical analysis of the core-level binding energy shifts in metal-supported ultrathin potassium chloride (KCl) films, i.e., a case from a broader class of few-atom-thick, wide-band gap insulating layers that is increasingly used in nanosciences and nanotechnologies. Using synchrotron-based high-resolution photoemission spectroscopy (HRPES) measurements, we identify the different contributions to the core-level binding energy shifts for the Cl– anions and K+ cations of two to three atomic layer-thick KCl films grown on Ag(100). The distances of the Cl– and K+ ions of the first two atomic layers of the KCl film from the metal substrate are determined from normal incidence X-ray standing wave measurements. We also calculated the core-level binding energy shifts using an analytical electrostatic model and found that the theoretical results are in agreement with the experimental HRPES results only when polarization and substrate-induced image charge effects are taken into account. Finally, our results evidence the effect of the third atomic layer of the KCl film, which partially covers and screens the first two atomic layers of KCl, wetting the metal substrate. |
doi_str_mv | 10.1021/acs.jpcc.3c06302 |
format | Article |
fullrecord | <record><control><sourceid>acs_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04332258v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b155490820</sourcerecordid><originalsourceid>FETCH-LOGICAL-a267t-b5acec8d8557bf3ccb56b55f7acd1da56a8a8a001fd4da747f4c8651cf1d6b93</originalsourceid><addsrcrecordid>eNp1UD1PwzAQtRBIlMLO6JFKpNhxnKRsIWopIoiBMjFYjj9aFzep7FCp_x6HVt3QSXfv7t476R4AtxiNMYrxAxd-vN4KMSYCpQTFZ2CAJySOsoTS8xNOsktw5f0aIUoQJgPwVbZORZXaKQufTCNNs4TTRrnlHn6sjO48NA38tJ3j3Sqgwn5za6J5SFLBmbEbD9sGvqmOW_8IX0vbt8XyDiM0ugYXOozVzbEOwWI2XZTzqHp_fimLKuJxmnVRTblQIpc5pVmtiRA1TWtKdcaFxJLTlOchEMJaJpJnSaYTkacUC41lWk_IEIwOZ1fcsq0zG-72rOWGzYuK9TOUEBLHNN_hwEUHrnCt907pkwAj1vvIgo-s95EdfQyS-4Pkb9P-uCb88j_9F6mqdTQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Core-Level Binding Energy Shifts in Ultrathin Alkali-Halide Films on Metals: KCl on Ag(100)</title><source>American Chemical Society Journals</source><creator>Le Moal, Séverine ; Krieger, Ina ; Kremring, Roman ; Weiß, Simon ; Yang, Xiaosheng ; Soubatch, Serguei ; Tautz, F. Stefan ; Silly, Mathieu ; Borisov, Andrei G. ; Sokolowski, Moritz ; Le Moal, Eric</creator><creatorcontrib>Le Moal, Séverine ; Krieger, Ina ; Kremring, Roman ; Weiß, Simon ; Yang, Xiaosheng ; Soubatch, Serguei ; Tautz, F. Stefan ; Silly, Mathieu ; Borisov, Andrei G. ; Sokolowski, Moritz ; Le Moal, Eric</creatorcontrib><description>We present an experimental and theoretical analysis of the core-level binding energy shifts in metal-supported ultrathin potassium chloride (KCl) films, i.e., a case from a broader class of few-atom-thick, wide-band gap insulating layers that is increasingly used in nanosciences and nanotechnologies. Using synchrotron-based high-resolution photoemission spectroscopy (HRPES) measurements, we identify the different contributions to the core-level binding energy shifts for the Cl– anions and K+ cations of two to three atomic layer-thick KCl films grown on Ag(100). The distances of the Cl– and K+ ions of the first two atomic layers of the KCl film from the metal substrate are determined from normal incidence X-ray standing wave measurements. We also calculated the core-level binding energy shifts using an analytical electrostatic model and found that the theoretical results are in agreement with the experimental HRPES results only when polarization and substrate-induced image charge effects are taken into account. Finally, our results evidence the effect of the third atomic layer of the KCl film, which partially covers and screens the first two atomic layers of KCl, wetting the metal substrate.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.3c06302</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>C: Spectroscopy and Dynamics of Nano, Hybrid, and Low-Dimensional Materials ; Condensed Matter ; Materials Science ; Physics</subject><ispartof>Journal of physical chemistry. C, 2023-12, Vol.127 (50), p.24253-24265</ispartof><rights>2023 American Chemical Society</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a267t-b5acec8d8557bf3ccb56b55f7acd1da56a8a8a001fd4da747f4c8651cf1d6b93</cites><orcidid>0000-0001-5991-3910 ; 0000-0002-1455-0260 ; 0000-0003-0819-5028 ; 0000-0002-8728-5066 ; 0000-0003-3583-2379</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.3c06302$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.3c06302$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04332258$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Le Moal, Séverine</creatorcontrib><creatorcontrib>Krieger, Ina</creatorcontrib><creatorcontrib>Kremring, Roman</creatorcontrib><creatorcontrib>Weiß, Simon</creatorcontrib><creatorcontrib>Yang, Xiaosheng</creatorcontrib><creatorcontrib>Soubatch, Serguei</creatorcontrib><creatorcontrib>Tautz, F. Stefan</creatorcontrib><creatorcontrib>Silly, Mathieu</creatorcontrib><creatorcontrib>Borisov, Andrei G.</creatorcontrib><creatorcontrib>Sokolowski, Moritz</creatorcontrib><creatorcontrib>Le Moal, Eric</creatorcontrib><title>Core-Level Binding Energy Shifts in Ultrathin Alkali-Halide Films on Metals: KCl on Ag(100)</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>We present an experimental and theoretical analysis of the core-level binding energy shifts in metal-supported ultrathin potassium chloride (KCl) films, i.e., a case from a broader class of few-atom-thick, wide-band gap insulating layers that is increasingly used in nanosciences and nanotechnologies. Using synchrotron-based high-resolution photoemission spectroscopy (HRPES) measurements, we identify the different contributions to the core-level binding energy shifts for the Cl– anions and K+ cations of two to three atomic layer-thick KCl films grown on Ag(100). The distances of the Cl– and K+ ions of the first two atomic layers of the KCl film from the metal substrate are determined from normal incidence X-ray standing wave measurements. We also calculated the core-level binding energy shifts using an analytical electrostatic model and found that the theoretical results are in agreement with the experimental HRPES results only when polarization and substrate-induced image charge effects are taken into account. Finally, our results evidence the effect of the third atomic layer of the KCl film, which partially covers and screens the first two atomic layers of KCl, wetting the metal substrate.</description><subject>C: Spectroscopy and Dynamics of Nano, Hybrid, and Low-Dimensional Materials</subject><subject>Condensed Matter</subject><subject>Materials Science</subject><subject>Physics</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1UD1PwzAQtRBIlMLO6JFKpNhxnKRsIWopIoiBMjFYjj9aFzep7FCp_x6HVt3QSXfv7t476R4AtxiNMYrxAxd-vN4KMSYCpQTFZ2CAJySOsoTS8xNOsktw5f0aIUoQJgPwVbZORZXaKQufTCNNs4TTRrnlHn6sjO48NA38tJ3j3Sqgwn5za6J5SFLBmbEbD9sGvqmOW_8IX0vbt8XyDiM0ugYXOozVzbEOwWI2XZTzqHp_fimLKuJxmnVRTblQIpc5pVmtiRA1TWtKdcaFxJLTlOchEMJaJpJnSaYTkacUC41lWk_IEIwOZ1fcsq0zG-72rOWGzYuK9TOUEBLHNN_hwEUHrnCt907pkwAj1vvIgo-s95EdfQyS-4Pkb9P-uCb88j_9F6mqdTQ</recordid><startdate>20231221</startdate><enddate>20231221</enddate><creator>Le Moal, Séverine</creator><creator>Krieger, Ina</creator><creator>Kremring, Roman</creator><creator>Weiß, Simon</creator><creator>Yang, Xiaosheng</creator><creator>Soubatch, Serguei</creator><creator>Tautz, F. Stefan</creator><creator>Silly, Mathieu</creator><creator>Borisov, Andrei G.</creator><creator>Sokolowski, Moritz</creator><creator>Le Moal, Eric</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-5991-3910</orcidid><orcidid>https://orcid.org/0000-0002-1455-0260</orcidid><orcidid>https://orcid.org/0000-0003-0819-5028</orcidid><orcidid>https://orcid.org/0000-0002-8728-5066</orcidid><orcidid>https://orcid.org/0000-0003-3583-2379</orcidid></search><sort><creationdate>20231221</creationdate><title>Core-Level Binding Energy Shifts in Ultrathin Alkali-Halide Films on Metals: KCl on Ag(100)</title><author>Le Moal, Séverine ; Krieger, Ina ; Kremring, Roman ; Weiß, Simon ; Yang, Xiaosheng ; Soubatch, Serguei ; Tautz, F. Stefan ; Silly, Mathieu ; Borisov, Andrei G. ; Sokolowski, Moritz ; Le Moal, Eric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a267t-b5acec8d8557bf3ccb56b55f7acd1da56a8a8a001fd4da747f4c8651cf1d6b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>C: Spectroscopy and Dynamics of Nano, Hybrid, and Low-Dimensional Materials</topic><topic>Condensed Matter</topic><topic>Materials Science</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Le Moal, Séverine</creatorcontrib><creatorcontrib>Krieger, Ina</creatorcontrib><creatorcontrib>Kremring, Roman</creatorcontrib><creatorcontrib>Weiß, Simon</creatorcontrib><creatorcontrib>Yang, Xiaosheng</creatorcontrib><creatorcontrib>Soubatch, Serguei</creatorcontrib><creatorcontrib>Tautz, F. Stefan</creatorcontrib><creatorcontrib>Silly, Mathieu</creatorcontrib><creatorcontrib>Borisov, Andrei G.</creatorcontrib><creatorcontrib>Sokolowski, Moritz</creatorcontrib><creatorcontrib>Le Moal, Eric</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Le Moal, Séverine</au><au>Krieger, Ina</au><au>Kremring, Roman</au><au>Weiß, Simon</au><au>Yang, Xiaosheng</au><au>Soubatch, Serguei</au><au>Tautz, F. Stefan</au><au>Silly, Mathieu</au><au>Borisov, Andrei G.</au><au>Sokolowski, Moritz</au><au>Le Moal, Eric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Core-Level Binding Energy Shifts in Ultrathin Alkali-Halide Films on Metals: KCl on Ag(100)</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2023-12-21</date><risdate>2023</risdate><volume>127</volume><issue>50</issue><spage>24253</spage><epage>24265</epage><pages>24253-24265</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>We present an experimental and theoretical analysis of the core-level binding energy shifts in metal-supported ultrathin potassium chloride (KCl) films, i.e., a case from a broader class of few-atom-thick, wide-band gap insulating layers that is increasingly used in nanosciences and nanotechnologies. Using synchrotron-based high-resolution photoemission spectroscopy (HRPES) measurements, we identify the different contributions to the core-level binding energy shifts for the Cl– anions and K+ cations of two to three atomic layer-thick KCl films grown on Ag(100). The distances of the Cl– and K+ ions of the first two atomic layers of the KCl film from the metal substrate are determined from normal incidence X-ray standing wave measurements. We also calculated the core-level binding energy shifts using an analytical electrostatic model and found that the theoretical results are in agreement with the experimental HRPES results only when polarization and substrate-induced image charge effects are taken into account. Finally, our results evidence the effect of the third atomic layer of the KCl film, which partially covers and screens the first two atomic layers of KCl, wetting the metal substrate.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.3c06302</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-5991-3910</orcidid><orcidid>https://orcid.org/0000-0002-1455-0260</orcidid><orcidid>https://orcid.org/0000-0003-0819-5028</orcidid><orcidid>https://orcid.org/0000-0002-8728-5066</orcidid><orcidid>https://orcid.org/0000-0003-3583-2379</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-7447 |
ispartof | Journal of physical chemistry. C, 2023-12, Vol.127 (50), p.24253-24265 |
issn | 1932-7447 1932-7455 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04332258v1 |
source | American Chemical Society Journals |
subjects | C: Spectroscopy and Dynamics of Nano, Hybrid, and Low-Dimensional Materials Condensed Matter Materials Science Physics |
title | Core-Level Binding Energy Shifts in Ultrathin Alkali-Halide Films on Metals: KCl on Ag(100) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T11%3A50%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Core-Level%20Binding%20Energy%20Shifts%20in%20Ultrathin%20Alkali-Halide%20Films%20on%20Metals:%20KCl%20on%20Ag(100)&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Le%20Moal,%20Se%CC%81verine&rft.date=2023-12-21&rft.volume=127&rft.issue=50&rft.spage=24253&rft.epage=24265&rft.pages=24253-24265&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.3c06302&rft_dat=%3Cacs_hal_p%3Eb155490820%3C/acs_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |