On the impact of multi-dimensional local differential privacy on fairness
Automated decision systems are increasingly used to make consequential decisions in people’s lives. Due to the sensitivity of the manipulated data and the resulting decisions, several ethical concerns need to be addressed for the appropriate use of such technologies, particularly fairness and privac...
Gespeichert in:
Veröffentlicht in: | Data mining and knowledge discovery 2024-07, Vol.38 (4), p.2252-2275 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2275 |
---|---|
container_issue | 4 |
container_start_page | 2252 |
container_title | Data mining and knowledge discovery |
container_volume | 38 |
creator | Makhlouf, Karima Arcolezi, Héber H. Zhioua, Sami Brahim, Ghassen Ben Palamidessi, Catuscia |
description | Automated decision systems are increasingly used to make consequential decisions in people’s lives. Due to the sensitivity of the manipulated data and the resulting decisions, several ethical concerns need to be addressed for the appropriate use of such technologies, particularly fairness and privacy. Unlike previous work, which focused on centralized differential privacy (DP) or on local DP (LDP) for a single sensitive attribute, in this paper, we examine the impact of LDP in the presence of several sensitive attributes (i.e.,
multi-dimensional data
) on fairness. Detailed empirical analysis on synthetic and benchmark datasets revealed very relevant observations. In particular, (1) multi-dimensional LDP is an efficient approach to reduce disparity, (2) the variant of the multi-dimensional approach of LDP (we employ two variants) matters only at low privacy guarantees (high
ϵ
), and (3) the true decision distribution has an important effect on which group is more sensitive to the obfuscation. Last, we summarize our findings in the form of recommendations to guide practitioners in adopting effective privacy-preserving practices while maintaining fairness and utility in machine learning applications. |
doi_str_mv | 10.1007/s10618-024-01031-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04329938v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3086149043</sourcerecordid><originalsourceid>FETCH-LOGICAL-c278t-87b08cf72657eec045266e486d17e6b86ad2bc106552557cab180036b3f589c93</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wNWAKxfRm2TymGUpaguFbhTchUwmY1PmUZNpof_e1BHduUlyw3cO9xyEbgk8EAD5GAkIojDQHAMBRjCcoQnhkmHJxft5ejOVY64IXKKrGLcAwCmDCVquu2zYuMy3O2OHrK-zdt8MHle-dV30fWearOltOitf1y64bvBp2AV_MPaY9V1WGx86F-M1uqhNE93Nzz1Fb89Pr_MFXq1flvPZClsq1YCVLEHZWlLBpXMWck6FcLkSFZFOlEqYipY2xeGcci6tKYkCYKJkNVeFLdgU3Y--G9PotEdrwlH3xuvFbKVPf5AzWhRMHWhi70Z2F_rPvYuD3vb7kDJFzUAJkhcJThQdKRv6GIOrf20J6FO9eqxXp3r1d70akoiNopjg7sOFP-t_VF98LXtO</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3086149043</pqid></control><display><type>article</type><title>On the impact of multi-dimensional local differential privacy on fairness</title><source>SpringerLink Journals - AutoHoldings</source><creator>Makhlouf, Karima ; Arcolezi, Héber H. ; Zhioua, Sami ; Brahim, Ghassen Ben ; Palamidessi, Catuscia</creator><creatorcontrib>Makhlouf, Karima ; Arcolezi, Héber H. ; Zhioua, Sami ; Brahim, Ghassen Ben ; Palamidessi, Catuscia</creatorcontrib><description>Automated decision systems are increasingly used to make consequential decisions in people’s lives. Due to the sensitivity of the manipulated data and the resulting decisions, several ethical concerns need to be addressed for the appropriate use of such technologies, particularly fairness and privacy. Unlike previous work, which focused on centralized differential privacy (DP) or on local DP (LDP) for a single sensitive attribute, in this paper, we examine the impact of LDP in the presence of several sensitive attributes (i.e.,
multi-dimensional data
) on fairness. Detailed empirical analysis on synthetic and benchmark datasets revealed very relevant observations. In particular, (1) multi-dimensional LDP is an efficient approach to reduce disparity, (2) the variant of the multi-dimensional approach of LDP (we employ two variants) matters only at low privacy guarantees (high
ϵ
), and (3) the true decision distribution has an important effect on which group is more sensitive to the obfuscation. Last, we summarize our findings in the form of recommendations to guide practitioners in adopting effective privacy-preserving practices while maintaining fairness and utility in machine learning applications.</description><identifier>ISSN: 1384-5810</identifier><identifier>EISSN: 1573-756X</identifier><identifier>DOI: 10.1007/s10618-024-01031-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial Intelligence ; Chemistry and Earth Sciences ; Computer Science ; Cryptography and Security ; Data Mining and Knowledge Discovery ; Decisions ; Dimensional analysis ; Empirical analysis ; Information Storage and Retrieval ; Machine Learning ; Multidimensional data ; Physics ; Privacy ; Statistics for Engineering</subject><ispartof>Data mining and knowledge discovery, 2024-07, Vol.38 (4), p.2252-2275</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c278t-87b08cf72657eec045266e486d17e6b86ad2bc106552557cab180036b3f589c93</cites><orcidid>0000-0003-4597-7002</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10618-024-01031-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10618-024-01031-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04329938$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Makhlouf, Karima</creatorcontrib><creatorcontrib>Arcolezi, Héber H.</creatorcontrib><creatorcontrib>Zhioua, Sami</creatorcontrib><creatorcontrib>Brahim, Ghassen Ben</creatorcontrib><creatorcontrib>Palamidessi, Catuscia</creatorcontrib><title>On the impact of multi-dimensional local differential privacy on fairness</title><title>Data mining and knowledge discovery</title><addtitle>Data Min Knowl Disc</addtitle><description>Automated decision systems are increasingly used to make consequential decisions in people’s lives. Due to the sensitivity of the manipulated data and the resulting decisions, several ethical concerns need to be addressed for the appropriate use of such technologies, particularly fairness and privacy. Unlike previous work, which focused on centralized differential privacy (DP) or on local DP (LDP) for a single sensitive attribute, in this paper, we examine the impact of LDP in the presence of several sensitive attributes (i.e.,
multi-dimensional data
) on fairness. Detailed empirical analysis on synthetic and benchmark datasets revealed very relevant observations. In particular, (1) multi-dimensional LDP is an efficient approach to reduce disparity, (2) the variant of the multi-dimensional approach of LDP (we employ two variants) matters only at low privacy guarantees (high
ϵ
), and (3) the true decision distribution has an important effect on which group is more sensitive to the obfuscation. Last, we summarize our findings in the form of recommendations to guide practitioners in adopting effective privacy-preserving practices while maintaining fairness and utility in machine learning applications.</description><subject>Artificial Intelligence</subject><subject>Chemistry and Earth Sciences</subject><subject>Computer Science</subject><subject>Cryptography and Security</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Decisions</subject><subject>Dimensional analysis</subject><subject>Empirical analysis</subject><subject>Information Storage and Retrieval</subject><subject>Machine Learning</subject><subject>Multidimensional data</subject><subject>Physics</subject><subject>Privacy</subject><subject>Statistics for Engineering</subject><issn>1384-5810</issn><issn>1573-756X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKt_wNWAKxfRm2TymGUpaguFbhTchUwmY1PmUZNpof_e1BHduUlyw3cO9xyEbgk8EAD5GAkIojDQHAMBRjCcoQnhkmHJxft5ejOVY64IXKKrGLcAwCmDCVquu2zYuMy3O2OHrK-zdt8MHle-dV30fWearOltOitf1y64bvBp2AV_MPaY9V1WGx86F-M1uqhNE93Nzz1Fb89Pr_MFXq1flvPZClsq1YCVLEHZWlLBpXMWck6FcLkSFZFOlEqYipY2xeGcci6tKYkCYKJkNVeFLdgU3Y--G9PotEdrwlH3xuvFbKVPf5AzWhRMHWhi70Z2F_rPvYuD3vb7kDJFzUAJkhcJThQdKRv6GIOrf20J6FO9eqxXp3r1d70akoiNopjg7sOFP-t_VF98LXtO</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Makhlouf, Karima</creator><creator>Arcolezi, Héber H.</creator><creator>Zhioua, Sami</creator><creator>Brahim, Ghassen Ben</creator><creator>Palamidessi, Catuscia</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-4597-7002</orcidid></search><sort><creationdate>20240701</creationdate><title>On the impact of multi-dimensional local differential privacy on fairness</title><author>Makhlouf, Karima ; Arcolezi, Héber H. ; Zhioua, Sami ; Brahim, Ghassen Ben ; Palamidessi, Catuscia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c278t-87b08cf72657eec045266e486d17e6b86ad2bc106552557cab180036b3f589c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial Intelligence</topic><topic>Chemistry and Earth Sciences</topic><topic>Computer Science</topic><topic>Cryptography and Security</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Decisions</topic><topic>Dimensional analysis</topic><topic>Empirical analysis</topic><topic>Information Storage and Retrieval</topic><topic>Machine Learning</topic><topic>Multidimensional data</topic><topic>Physics</topic><topic>Privacy</topic><topic>Statistics for Engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Makhlouf, Karima</creatorcontrib><creatorcontrib>Arcolezi, Héber H.</creatorcontrib><creatorcontrib>Zhioua, Sami</creatorcontrib><creatorcontrib>Brahim, Ghassen Ben</creatorcontrib><creatorcontrib>Palamidessi, Catuscia</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Data mining and knowledge discovery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Makhlouf, Karima</au><au>Arcolezi, Héber H.</au><au>Zhioua, Sami</au><au>Brahim, Ghassen Ben</au><au>Palamidessi, Catuscia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the impact of multi-dimensional local differential privacy on fairness</atitle><jtitle>Data mining and knowledge discovery</jtitle><stitle>Data Min Knowl Disc</stitle><date>2024-07-01</date><risdate>2024</risdate><volume>38</volume><issue>4</issue><spage>2252</spage><epage>2275</epage><pages>2252-2275</pages><issn>1384-5810</issn><eissn>1573-756X</eissn><abstract>Automated decision systems are increasingly used to make consequential decisions in people’s lives. Due to the sensitivity of the manipulated data and the resulting decisions, several ethical concerns need to be addressed for the appropriate use of such technologies, particularly fairness and privacy. Unlike previous work, which focused on centralized differential privacy (DP) or on local DP (LDP) for a single sensitive attribute, in this paper, we examine the impact of LDP in the presence of several sensitive attributes (i.e.,
multi-dimensional data
) on fairness. Detailed empirical analysis on synthetic and benchmark datasets revealed very relevant observations. In particular, (1) multi-dimensional LDP is an efficient approach to reduce disparity, (2) the variant of the multi-dimensional approach of LDP (we employ two variants) matters only at low privacy guarantees (high
ϵ
), and (3) the true decision distribution has an important effect on which group is more sensitive to the obfuscation. Last, we summarize our findings in the form of recommendations to guide practitioners in adopting effective privacy-preserving practices while maintaining fairness and utility in machine learning applications.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10618-024-01031-0</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0003-4597-7002</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1384-5810 |
ispartof | Data mining and knowledge discovery, 2024-07, Vol.38 (4), p.2252-2275 |
issn | 1384-5810 1573-756X |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04329938v2 |
source | SpringerLink Journals - AutoHoldings |
subjects | Artificial Intelligence Chemistry and Earth Sciences Computer Science Cryptography and Security Data Mining and Knowledge Discovery Decisions Dimensional analysis Empirical analysis Information Storage and Retrieval Machine Learning Multidimensional data Physics Privacy Statistics for Engineering |
title | On the impact of multi-dimensional local differential privacy on fairness |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T07%3A09%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20impact%20of%20multi-dimensional%20local%20differential%20privacy%20on%20fairness&rft.jtitle=Data%20mining%20and%20knowledge%20discovery&rft.au=Makhlouf,%20Karima&rft.date=2024-07-01&rft.volume=38&rft.issue=4&rft.spage=2252&rft.epage=2275&rft.pages=2252-2275&rft.issn=1384-5810&rft.eissn=1573-756X&rft_id=info:doi/10.1007/s10618-024-01031-0&rft_dat=%3Cproquest_hal_p%3E3086149043%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3086149043&rft_id=info:pmid/&rfr_iscdi=true |