Experimental Methodology for Kinetic Acquisitions Using High Velocities in a Microfluidic Device

A theoretical description and an experimental validation of the application of a microfluidic chip with high‐velocity stratified flows for determining chemical kinetics for liquid‐liquid extraction are presented. In the case of uranium extraction under PUREX (plutonium and uranium refining by extrac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical engineering & technology 2019-10, Vol.42 (10), p.2223-2230
Hauptverfasser: Corne, Florian, Lélias, Anne, Magnaldo, Alastair, Sorel, Christian, Di Miceli Raimondi, Nathalie, Prat, Laurent
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2230
container_issue 10
container_start_page 2223
container_title Chemical engineering & technology
container_volume 42
creator Corne, Florian
Lélias, Anne
Magnaldo, Alastair
Sorel, Christian
Di Miceli Raimondi, Nathalie
Prat, Laurent
description A theoretical description and an experimental validation of the application of a microfluidic chip with high‐velocity stratified flows for determining chemical kinetics for liquid‐liquid extraction are presented. In the case of uranium extraction under PUREX (plutonium and uranium refining by extraction) process conditions, a simple theoretical model demonstrates the need for high velocities and short residence times of around 10 ms. Confocal microscopy observations of the interface were undertaken to insure the flow stability at such high velocities, and the same experimental protocol was carried out to uranium(VI) extraction at two concentrations. Results show an unexpected variation in the phase homogenization depending on the uranium concentration of the extracted phase. The application of a microfluidic chip with high‐velocity stratified flows for determining chemical kinetics for liquid‐liquid extraction is theoretically and experimentally validated. A simple theoretical model shows the need for short residence times involving high fluid velocities. Confocal microscopy proves that with such parameters no major deformation of the liquid‐liquid interface occurs.
doi_str_mv 10.1002/ceat.201900111
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04329653v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2295988796</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3881-38548d66b2119f244b4cc5b34fc8cb57842029fefbcbd96eb7367264acf1e7153</originalsourceid><addsrcrecordid>eNqFkMFPwjAUxhujiYhePTfx5GHY17XbelwQxQjxAl7r1rVQMldYB8p_bwkGj55e3svv-_K-D6FbIAMghD4oXXQDSkAQAgBnqAecQsSA8nPUIyImUcohuURX3q9IYMLSQx-j77Vu7aduuqLGU90tXeVqt9hj41r8ahvdWYVztdlabzvrGo_n3jYLPLaLJX7XtVPhrD22DS7w1KrWmXprqyB61Dur9DW6MEXt9c3v7KP502g2HEeTt-eXYT6JVJxlEMUZZ1mVJCUFEIYyVjKleBkzozJV8jRjlFBhtClVWYlEl2mcpDRhhTKgU-BxH90ffZdFLdchUdHupSusHOcTebgRFlOR8HgHgb07suvWbbbad3Lltm0T3pOUCi6yLBVJoAZHKmTyvtXmZAtEHhqXh8blqfEgEEfBl631_h9aDkf57E_7AwrlhFI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2295988796</pqid></control><display><type>article</type><title>Experimental Methodology for Kinetic Acquisitions Using High Velocities in a Microfluidic Device</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Corne, Florian ; Lélias, Anne ; Magnaldo, Alastair ; Sorel, Christian ; Di Miceli Raimondi, Nathalie ; Prat, Laurent</creator><creatorcontrib>Corne, Florian ; Lélias, Anne ; Magnaldo, Alastair ; Sorel, Christian ; Di Miceli Raimondi, Nathalie ; Prat, Laurent</creatorcontrib><description>A theoretical description and an experimental validation of the application of a microfluidic chip with high‐velocity stratified flows for determining chemical kinetics for liquid‐liquid extraction are presented. In the case of uranium extraction under PUREX (plutonium and uranium refining by extraction) process conditions, a simple theoretical model demonstrates the need for high velocities and short residence times of around 10 ms. Confocal microscopy observations of the interface were undertaken to insure the flow stability at such high velocities, and the same experimental protocol was carried out to uranium(VI) extraction at two concentrations. Results show an unexpected variation in the phase homogenization depending on the uranium concentration of the extracted phase. The application of a microfluidic chip with high‐velocity stratified flows for determining chemical kinetics for liquid‐liquid extraction is theoretically and experimentally validated. A simple theoretical model shows the need for short residence times involving high fluid velocities. Confocal microscopy proves that with such parameters no major deformation of the liquid‐liquid interface occurs.</description><identifier>ISSN: 0930-7516</identifier><identifier>EISSN: 1521-4125</identifier><identifier>DOI: 10.1002/ceat.201900111</identifier><language>eng</language><publisher>Frankfurt: Wiley Subscription Services, Inc</publisher><subject>Chemical engineering ; Chemical kinetics ; Chemical Sciences ; Engineering Sciences ; Experimental methods ; Flow stability ; Interface stability ; Liquid‐liquid extraction ; Mass transfer ; Microfluidic device ; Microfluidic devices ; Organic chemistry ; Plutonium ; Radiochemistry ; Reaction kinetics ; Stratified flow ; Uranium</subject><ispartof>Chemical engineering &amp; technology, 2019-10, Vol.42 (10), p.2223-2230</ispartof><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3881-38548d66b2119f244b4cc5b34fc8cb57842029fefbcbd96eb7367264acf1e7153</citedby><cites>FETCH-LOGICAL-c3881-38548d66b2119f244b4cc5b34fc8cb57842029fefbcbd96eb7367264acf1e7153</cites><orcidid>0000-0001-8853-6667 ; 0000-0002-7124-9829</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fceat.201900111$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fceat.201900111$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04329653$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Corne, Florian</creatorcontrib><creatorcontrib>Lélias, Anne</creatorcontrib><creatorcontrib>Magnaldo, Alastair</creatorcontrib><creatorcontrib>Sorel, Christian</creatorcontrib><creatorcontrib>Di Miceli Raimondi, Nathalie</creatorcontrib><creatorcontrib>Prat, Laurent</creatorcontrib><title>Experimental Methodology for Kinetic Acquisitions Using High Velocities in a Microfluidic Device</title><title>Chemical engineering &amp; technology</title><description>A theoretical description and an experimental validation of the application of a microfluidic chip with high‐velocity stratified flows for determining chemical kinetics for liquid‐liquid extraction are presented. In the case of uranium extraction under PUREX (plutonium and uranium refining by extraction) process conditions, a simple theoretical model demonstrates the need for high velocities and short residence times of around 10 ms. Confocal microscopy observations of the interface were undertaken to insure the flow stability at such high velocities, and the same experimental protocol was carried out to uranium(VI) extraction at two concentrations. Results show an unexpected variation in the phase homogenization depending on the uranium concentration of the extracted phase. The application of a microfluidic chip with high‐velocity stratified flows for determining chemical kinetics for liquid‐liquid extraction is theoretically and experimentally validated. A simple theoretical model shows the need for short residence times involving high fluid velocities. Confocal microscopy proves that with such parameters no major deformation of the liquid‐liquid interface occurs.</description><subject>Chemical engineering</subject><subject>Chemical kinetics</subject><subject>Chemical Sciences</subject><subject>Engineering Sciences</subject><subject>Experimental methods</subject><subject>Flow stability</subject><subject>Interface stability</subject><subject>Liquid‐liquid extraction</subject><subject>Mass transfer</subject><subject>Microfluidic device</subject><subject>Microfluidic devices</subject><subject>Organic chemistry</subject><subject>Plutonium</subject><subject>Radiochemistry</subject><subject>Reaction kinetics</subject><subject>Stratified flow</subject><subject>Uranium</subject><issn>0930-7516</issn><issn>1521-4125</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkMFPwjAUxhujiYhePTfx5GHY17XbelwQxQjxAl7r1rVQMldYB8p_bwkGj55e3svv-_K-D6FbIAMghD4oXXQDSkAQAgBnqAecQsSA8nPUIyImUcohuURX3q9IYMLSQx-j77Vu7aduuqLGU90tXeVqt9hj41r8ahvdWYVztdlabzvrGo_n3jYLPLaLJX7XtVPhrD22DS7w1KrWmXprqyB61Dur9DW6MEXt9c3v7KP502g2HEeTt-eXYT6JVJxlEMUZZ1mVJCUFEIYyVjKleBkzozJV8jRjlFBhtClVWYlEl2mcpDRhhTKgU-BxH90ffZdFLdchUdHupSusHOcTebgRFlOR8HgHgb07suvWbbbad3Lltm0T3pOUCi6yLBVJoAZHKmTyvtXmZAtEHhqXh8blqfEgEEfBl631_h9aDkf57E_7AwrlhFI</recordid><startdate>201910</startdate><enddate>201910</enddate><creator>Corne, Florian</creator><creator>Lélias, Anne</creator><creator>Magnaldo, Alastair</creator><creator>Sorel, Christian</creator><creator>Di Miceli Raimondi, Nathalie</creator><creator>Prat, Laurent</creator><general>Wiley Subscription Services, Inc</general><general>Wiley-VCH Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-8853-6667</orcidid><orcidid>https://orcid.org/0000-0002-7124-9829</orcidid></search><sort><creationdate>201910</creationdate><title>Experimental Methodology for Kinetic Acquisitions Using High Velocities in a Microfluidic Device</title><author>Corne, Florian ; Lélias, Anne ; Magnaldo, Alastair ; Sorel, Christian ; Di Miceli Raimondi, Nathalie ; Prat, Laurent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3881-38548d66b2119f244b4cc5b34fc8cb57842029fefbcbd96eb7367264acf1e7153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Chemical engineering</topic><topic>Chemical kinetics</topic><topic>Chemical Sciences</topic><topic>Engineering Sciences</topic><topic>Experimental methods</topic><topic>Flow stability</topic><topic>Interface stability</topic><topic>Liquid‐liquid extraction</topic><topic>Mass transfer</topic><topic>Microfluidic device</topic><topic>Microfluidic devices</topic><topic>Organic chemistry</topic><topic>Plutonium</topic><topic>Radiochemistry</topic><topic>Reaction kinetics</topic><topic>Stratified flow</topic><topic>Uranium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Corne, Florian</creatorcontrib><creatorcontrib>Lélias, Anne</creatorcontrib><creatorcontrib>Magnaldo, Alastair</creatorcontrib><creatorcontrib>Sorel, Christian</creatorcontrib><creatorcontrib>Di Miceli Raimondi, Nathalie</creatorcontrib><creatorcontrib>Prat, Laurent</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Chemical engineering &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Corne, Florian</au><au>Lélias, Anne</au><au>Magnaldo, Alastair</au><au>Sorel, Christian</au><au>Di Miceli Raimondi, Nathalie</au><au>Prat, Laurent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental Methodology for Kinetic Acquisitions Using High Velocities in a Microfluidic Device</atitle><jtitle>Chemical engineering &amp; technology</jtitle><date>2019-10</date><risdate>2019</risdate><volume>42</volume><issue>10</issue><spage>2223</spage><epage>2230</epage><pages>2223-2230</pages><issn>0930-7516</issn><eissn>1521-4125</eissn><abstract>A theoretical description and an experimental validation of the application of a microfluidic chip with high‐velocity stratified flows for determining chemical kinetics for liquid‐liquid extraction are presented. In the case of uranium extraction under PUREX (plutonium and uranium refining by extraction) process conditions, a simple theoretical model demonstrates the need for high velocities and short residence times of around 10 ms. Confocal microscopy observations of the interface were undertaken to insure the flow stability at such high velocities, and the same experimental protocol was carried out to uranium(VI) extraction at two concentrations. Results show an unexpected variation in the phase homogenization depending on the uranium concentration of the extracted phase. The application of a microfluidic chip with high‐velocity stratified flows for determining chemical kinetics for liquid‐liquid extraction is theoretically and experimentally validated. A simple theoretical model shows the need for short residence times involving high fluid velocities. Confocal microscopy proves that with such parameters no major deformation of the liquid‐liquid interface occurs.</abstract><cop>Frankfurt</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ceat.201900111</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-8853-6667</orcidid><orcidid>https://orcid.org/0000-0002-7124-9829</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0930-7516
ispartof Chemical engineering & technology, 2019-10, Vol.42 (10), p.2223-2230
issn 0930-7516
1521-4125
language eng
recordid cdi_hal_primary_oai_HAL_hal_04329653v1
source Wiley Online Library Journals Frontfile Complete
subjects Chemical engineering
Chemical kinetics
Chemical Sciences
Engineering Sciences
Experimental methods
Flow stability
Interface stability
Liquid‐liquid extraction
Mass transfer
Microfluidic device
Microfluidic devices
Organic chemistry
Plutonium
Radiochemistry
Reaction kinetics
Stratified flow
Uranium
title Experimental Methodology for Kinetic Acquisitions Using High Velocities in a Microfluidic Device
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T11%3A39%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20Methodology%20for%20Kinetic%20Acquisitions%20Using%20High%20Velocities%20in%20a%20Microfluidic%20Device&rft.jtitle=Chemical%20engineering%20&%20technology&rft.au=Corne,%20Florian&rft.date=2019-10&rft.volume=42&rft.issue=10&rft.spage=2223&rft.epage=2230&rft.pages=2223-2230&rft.issn=0930-7516&rft.eissn=1521-4125&rft_id=info:doi/10.1002/ceat.201900111&rft_dat=%3Cproquest_hal_p%3E2295988796%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2295988796&rft_id=info:pmid/&rfr_iscdi=true