The Role of Canonical Transient Receptor Potential 7 in B-cell Receptor-activated Channels
Phospholipase C signaling stimulates Ca2+ entry across the plasma membrane through multiple mechanisms. Ca2+ store depletion stimulates store-operated Ca2+-selective channels, or alternatively, other phospholipase C-dependent events activate Ca2+-permeable non-selective cation channels. Transient re...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2005-10, Vol.280 (42), p.35346-35351 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Phospholipase C signaling stimulates Ca2+ entry across the plasma membrane through multiple mechanisms. Ca2+ store depletion stimulates store-operated Ca2+-selective channels, or alternatively, other phospholipase C-dependent events activate Ca2+-permeable non-selective cation channels. Transient receptor potential 7 (TRPC7) is a non-selective cation channel that can be activated by both mechanisms when ectopically expressed, but the regulation of native TRPC7 channels is not known. We knocked out TRPC7 in DT40 B-cells, which expresses both forms of Ca2+ entry. No difference in the store-operated current Icrac was detected between TRPC7-/- and wild-type cells. Wild-type cells demonstrated nonstore-operated cation entry and currents in response to activation of the B-cell receptor or protease-activated receptor 2, intracellular dialysis with GTPγS, or application of the synthetic diacylglycerol oleyl-acetyl-glycerol. These responses were absent in TRPC7-/- cells but could be restored by transfection with human TRPC7. In conclusion, in B-lymphocytes, TRPC7 appeared to participate in the formation of ion channels that could be activated by phospholipase C-linked receptors. This represents the first demonstration of a physiological function for endogenous TRPC7 channels. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.M507606200 |