Stabilization of Human Tyrosine Hydroxylase in Maltodextrin Nanoparticles for Delivery to Neuronal Cells and Tissue
Enzyme replacement therapy (ERT) is a therapeutic approach envisioned decades ago for the correction of genetic disorders, but ERT has been less successful for the correction of disorders with neurological manifestations. In this work, we have tested the functionality of nanoparticles (NP) composed...
Gespeichert in:
Veröffentlicht in: | Bioconjugate chemistry 2018-02, Vol.29 (2), p.493-502 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 502 |
---|---|
container_issue | 2 |
container_start_page | 493 |
container_title | Bioconjugate chemistry |
container_volume | 29 |
creator | Bezem, Maria T Johannessen, Fredrik G Jung-KC, Kunwar Gundersen, Edvin Tang Jorge-Finnigan, Ana Ying, Ming Betbeder, Didier Herfindal, Lars Martinez, Aurora |
description | Enzyme replacement therapy (ERT) is a therapeutic approach envisioned decades ago for the correction of genetic disorders, but ERT has been less successful for the correction of disorders with neurological manifestations. In this work, we have tested the functionality of nanoparticles (NP) composed of maltodextrin with a lipid core to bind and stabilize tyrosine hydroxylase (TH). This is a complex and unstable brain enzyme that catalyzes the rate-limiting step in the synthesis of dopamine and other catecholamine neurotransmitters. We have characterized these TH-loaded NPs to evaluate their potential for ERT in diseases associated with TH dysfunction. Our results show that TH can be loaded into the lipid core maltodextrin NPs with high efficiency, and both stability and activity are maintained through loading and are preserved during storage. Binding to NPs also favored the uptake of TH to neuronal cells, both in cell culture and in the brain. The internalized NP-bound TH was active as we measured an increase in intracellular L-Dopa synthesis following NP uptake. Our approach seems promising for the use of catalytically active NPs in ERT to treat neurodegenerative and neuropsychiatric disorders characterized by dopamine deficiency, notably Parkinson’s disease. |
doi_str_mv | 10.1021/acs.bioconjchem.7b00807 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04318354v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1984751181</sourcerecordid><originalsourceid>FETCH-LOGICAL-a419t-93e34e8fbd4ecf3dbb306a77a4a8591013d369954d8e313924558b7f01dcbd343</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhiMEoqXwF8ASFzhk67Gdxj5WW2CRlvbAcrYmsaN65cSLnVQNvx6vdlmhXnryh555PZ6nKD4AXQBlcIltWjQutGHYtve2X9QNpZLWL4pzqBgthQT2Mu-p4CVIys6KNyltKaUKJHtdnDHFlFKMnRfp54iN8-4Pji4MJHRkNfU4kM0cQ3KDJavZxPA4e0yWuIH8QD8GYx_HmA-3OIQdxtG13ibShUhurHcPNs5kDOTWTjEM6MnSep8IDoZsXEqTfVu86tAn--64XhS_vn7ZLFfl-u7b9-X1ukQBaiwVt1xY2TVG2Lbjpmk4vcK6RoGyUkCBG36lVCWMtBy4YqKqZFN3FEzbGC74RfH5kHuPXu-i6zHOOqDTq-u13t_l8YDklXiAzH46sLsYfk82jbp3qc2N42DDlDQoKeoKQO7Rj0_QbZhi_mjSjEJVs5oCy1R9oNo8yBRtd-oAqN471Nmh_s-hPjrMle-P-VPTW3Oq-yctA_wA7BNObz8X-xdZPK4l</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2015727012</pqid></control><display><type>article</type><title>Stabilization of Human Tyrosine Hydroxylase in Maltodextrin Nanoparticles for Delivery to Neuronal Cells and Tissue</title><source>MEDLINE</source><source>ACS Publications</source><creator>Bezem, Maria T ; Johannessen, Fredrik G ; Jung-KC, Kunwar ; Gundersen, Edvin Tang ; Jorge-Finnigan, Ana ; Ying, Ming ; Betbeder, Didier ; Herfindal, Lars ; Martinez, Aurora</creator><creatorcontrib>Bezem, Maria T ; Johannessen, Fredrik G ; Jung-KC, Kunwar ; Gundersen, Edvin Tang ; Jorge-Finnigan, Ana ; Ying, Ming ; Betbeder, Didier ; Herfindal, Lars ; Martinez, Aurora</creatorcontrib><description>Enzyme replacement therapy (ERT) is a therapeutic approach envisioned decades ago for the correction of genetic disorders, but ERT has been less successful for the correction of disorders with neurological manifestations. In this work, we have tested the functionality of nanoparticles (NP) composed of maltodextrin with a lipid core to bind and stabilize tyrosine hydroxylase (TH). This is a complex and unstable brain enzyme that catalyzes the rate-limiting step in the synthesis of dopamine and other catecholamine neurotransmitters. We have characterized these TH-loaded NPs to evaluate their potential for ERT in diseases associated with TH dysfunction. Our results show that TH can be loaded into the lipid core maltodextrin NPs with high efficiency, and both stability and activity are maintained through loading and are preserved during storage. Binding to NPs also favored the uptake of TH to neuronal cells, both in cell culture and in the brain. The internalized NP-bound TH was active as we measured an increase in intracellular L-Dopa synthesis following NP uptake. Our approach seems promising for the use of catalytically active NPs in ERT to treat neurodegenerative and neuropsychiatric disorders characterized by dopamine deficiency, notably Parkinson’s disease.</description><identifier>ISSN: 1043-1802</identifier><identifier>EISSN: 1520-4812</identifier><identifier>DOI: 10.1021/acs.bioconjchem.7b00807</identifier><identifier>PMID: 29299922</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Animals ; Brain ; Brain - metabolism ; Catalysis ; Catecholamine ; Catecholamines ; Cell culture ; Cell Line ; Cells ; Chemical synthesis ; Dihydroxyphenylalanine ; Disorders ; Dopamine ; Drug Carriers - chemistry ; Enzyme Stability ; Enzyme Therapy ; Enzymes ; Female ; Genetic disorders ; Humans ; Hydroxylase ; Levodopa ; Life Sciences ; Lipids ; Male ; Maltodextrin ; Mental disorders ; Models, Molecular ; Movement disorders ; Nanoparticles ; Nanoparticles - chemistry ; Neurodegenerative diseases ; Neurological diseases ; Neurons ; Neurons - metabolism ; Neurotransmitters ; Parkinson Disease - drug therapy ; Parkinson Disease - enzymology ; Parkinson's disease ; Polysaccharides - chemistry ; Tissues ; Tyrosine ; Tyrosine 3-monooxygenase ; Tyrosine 3-Monooxygenase - administration & dosage ; Tyrosine 3-Monooxygenase - pharmacokinetics</subject><ispartof>Bioconjugate chemistry, 2018-02, Vol.29 (2), p.493-502</ispartof><rights>Copyright © 2018 American Chemical Society</rights><rights>Copyright American Chemical Society Feb 21, 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a419t-93e34e8fbd4ecf3dbb306a77a4a8591013d369954d8e313924558b7f01dcbd343</citedby><cites>FETCH-LOGICAL-a419t-93e34e8fbd4ecf3dbb306a77a4a8591013d369954d8e313924558b7f01dcbd343</cites><orcidid>0000-0003-1643-6506</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.bioconjchem.7b00807$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.bioconjchem.7b00807$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29299922$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.univ-lille.fr/hal-04318354$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bezem, Maria T</creatorcontrib><creatorcontrib>Johannessen, Fredrik G</creatorcontrib><creatorcontrib>Jung-KC, Kunwar</creatorcontrib><creatorcontrib>Gundersen, Edvin Tang</creatorcontrib><creatorcontrib>Jorge-Finnigan, Ana</creatorcontrib><creatorcontrib>Ying, Ming</creatorcontrib><creatorcontrib>Betbeder, Didier</creatorcontrib><creatorcontrib>Herfindal, Lars</creatorcontrib><creatorcontrib>Martinez, Aurora</creatorcontrib><title>Stabilization of Human Tyrosine Hydroxylase in Maltodextrin Nanoparticles for Delivery to Neuronal Cells and Tissue</title><title>Bioconjugate chemistry</title><addtitle>Bioconjugate Chem</addtitle><description>Enzyme replacement therapy (ERT) is a therapeutic approach envisioned decades ago for the correction of genetic disorders, but ERT has been less successful for the correction of disorders with neurological manifestations. In this work, we have tested the functionality of nanoparticles (NP) composed of maltodextrin with a lipid core to bind and stabilize tyrosine hydroxylase (TH). This is a complex and unstable brain enzyme that catalyzes the rate-limiting step in the synthesis of dopamine and other catecholamine neurotransmitters. We have characterized these TH-loaded NPs to evaluate their potential for ERT in diseases associated with TH dysfunction. Our results show that TH can be loaded into the lipid core maltodextrin NPs with high efficiency, and both stability and activity are maintained through loading and are preserved during storage. Binding to NPs also favored the uptake of TH to neuronal cells, both in cell culture and in the brain. The internalized NP-bound TH was active as we measured an increase in intracellular L-Dopa synthesis following NP uptake. Our approach seems promising for the use of catalytically active NPs in ERT to treat neurodegenerative and neuropsychiatric disorders characterized by dopamine deficiency, notably Parkinson’s disease.</description><subject>Animals</subject><subject>Brain</subject><subject>Brain - metabolism</subject><subject>Catalysis</subject><subject>Catecholamine</subject><subject>Catecholamines</subject><subject>Cell culture</subject><subject>Cell Line</subject><subject>Cells</subject><subject>Chemical synthesis</subject><subject>Dihydroxyphenylalanine</subject><subject>Disorders</subject><subject>Dopamine</subject><subject>Drug Carriers - chemistry</subject><subject>Enzyme Stability</subject><subject>Enzyme Therapy</subject><subject>Enzymes</subject><subject>Female</subject><subject>Genetic disorders</subject><subject>Humans</subject><subject>Hydroxylase</subject><subject>Levodopa</subject><subject>Life Sciences</subject><subject>Lipids</subject><subject>Male</subject><subject>Maltodextrin</subject><subject>Mental disorders</subject><subject>Models, Molecular</subject><subject>Movement disorders</subject><subject>Nanoparticles</subject><subject>Nanoparticles - chemistry</subject><subject>Neurodegenerative diseases</subject><subject>Neurological diseases</subject><subject>Neurons</subject><subject>Neurons - metabolism</subject><subject>Neurotransmitters</subject><subject>Parkinson Disease - drug therapy</subject><subject>Parkinson Disease - enzymology</subject><subject>Parkinson's disease</subject><subject>Polysaccharides - chemistry</subject><subject>Tissues</subject><subject>Tyrosine</subject><subject>Tyrosine 3-monooxygenase</subject><subject>Tyrosine 3-Monooxygenase - administration & dosage</subject><subject>Tyrosine 3-Monooxygenase - pharmacokinetics</subject><issn>1043-1802</issn><issn>1520-4812</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1v1DAQhiMEoqXwF8ASFzhk67Gdxj5WW2CRlvbAcrYmsaN65cSLnVQNvx6vdlmhXnryh555PZ6nKD4AXQBlcIltWjQutGHYtve2X9QNpZLWL4pzqBgthQT2Mu-p4CVIys6KNyltKaUKJHtdnDHFlFKMnRfp54iN8-4Pji4MJHRkNfU4kM0cQ3KDJavZxPA4e0yWuIH8QD8GYx_HmA-3OIQdxtG13ibShUhurHcPNs5kDOTWTjEM6MnSep8IDoZsXEqTfVu86tAn--64XhS_vn7ZLFfl-u7b9-X1ukQBaiwVt1xY2TVG2Lbjpmk4vcK6RoGyUkCBG36lVCWMtBy4YqKqZFN3FEzbGC74RfH5kHuPXu-i6zHOOqDTq-u13t_l8YDklXiAzH46sLsYfk82jbp3qc2N42DDlDQoKeoKQO7Rj0_QbZhi_mjSjEJVs5oCy1R9oNo8yBRtd-oAqN471Nmh_s-hPjrMle-P-VPTW3Oq-yctA_wA7BNObz8X-xdZPK4l</recordid><startdate>20180221</startdate><enddate>20180221</enddate><creator>Bezem, Maria T</creator><creator>Johannessen, Fredrik G</creator><creator>Jung-KC, Kunwar</creator><creator>Gundersen, Edvin Tang</creator><creator>Jorge-Finnigan, Ana</creator><creator>Ying, Ming</creator><creator>Betbeder, Didier</creator><creator>Herfindal, Lars</creator><creator>Martinez, Aurora</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-1643-6506</orcidid></search><sort><creationdate>20180221</creationdate><title>Stabilization of Human Tyrosine Hydroxylase in Maltodextrin Nanoparticles for Delivery to Neuronal Cells and Tissue</title><author>Bezem, Maria T ; Johannessen, Fredrik G ; Jung-KC, Kunwar ; Gundersen, Edvin Tang ; Jorge-Finnigan, Ana ; Ying, Ming ; Betbeder, Didier ; Herfindal, Lars ; Martinez, Aurora</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a419t-93e34e8fbd4ecf3dbb306a77a4a8591013d369954d8e313924558b7f01dcbd343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Brain</topic><topic>Brain - metabolism</topic><topic>Catalysis</topic><topic>Catecholamine</topic><topic>Catecholamines</topic><topic>Cell culture</topic><topic>Cell Line</topic><topic>Cells</topic><topic>Chemical synthesis</topic><topic>Dihydroxyphenylalanine</topic><topic>Disorders</topic><topic>Dopamine</topic><topic>Drug Carriers - chemistry</topic><topic>Enzyme Stability</topic><topic>Enzyme Therapy</topic><topic>Enzymes</topic><topic>Female</topic><topic>Genetic disorders</topic><topic>Humans</topic><topic>Hydroxylase</topic><topic>Levodopa</topic><topic>Life Sciences</topic><topic>Lipids</topic><topic>Male</topic><topic>Maltodextrin</topic><topic>Mental disorders</topic><topic>Models, Molecular</topic><topic>Movement disorders</topic><topic>Nanoparticles</topic><topic>Nanoparticles - chemistry</topic><topic>Neurodegenerative diseases</topic><topic>Neurological diseases</topic><topic>Neurons</topic><topic>Neurons - metabolism</topic><topic>Neurotransmitters</topic><topic>Parkinson Disease - drug therapy</topic><topic>Parkinson Disease - enzymology</topic><topic>Parkinson's disease</topic><topic>Polysaccharides - chemistry</topic><topic>Tissues</topic><topic>Tyrosine</topic><topic>Tyrosine 3-monooxygenase</topic><topic>Tyrosine 3-Monooxygenase - administration & dosage</topic><topic>Tyrosine 3-Monooxygenase - pharmacokinetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bezem, Maria T</creatorcontrib><creatorcontrib>Johannessen, Fredrik G</creatorcontrib><creatorcontrib>Jung-KC, Kunwar</creatorcontrib><creatorcontrib>Gundersen, Edvin Tang</creatorcontrib><creatorcontrib>Jorge-Finnigan, Ana</creatorcontrib><creatorcontrib>Ying, Ming</creatorcontrib><creatorcontrib>Betbeder, Didier</creatorcontrib><creatorcontrib>Herfindal, Lars</creatorcontrib><creatorcontrib>Martinez, Aurora</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Bioconjugate chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bezem, Maria T</au><au>Johannessen, Fredrik G</au><au>Jung-KC, Kunwar</au><au>Gundersen, Edvin Tang</au><au>Jorge-Finnigan, Ana</au><au>Ying, Ming</au><au>Betbeder, Didier</au><au>Herfindal, Lars</au><au>Martinez, Aurora</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stabilization of Human Tyrosine Hydroxylase in Maltodextrin Nanoparticles for Delivery to Neuronal Cells and Tissue</atitle><jtitle>Bioconjugate chemistry</jtitle><addtitle>Bioconjugate Chem</addtitle><date>2018-02-21</date><risdate>2018</risdate><volume>29</volume><issue>2</issue><spage>493</spage><epage>502</epage><pages>493-502</pages><issn>1043-1802</issn><eissn>1520-4812</eissn><abstract>Enzyme replacement therapy (ERT) is a therapeutic approach envisioned decades ago for the correction of genetic disorders, but ERT has been less successful for the correction of disorders with neurological manifestations. In this work, we have tested the functionality of nanoparticles (NP) composed of maltodextrin with a lipid core to bind and stabilize tyrosine hydroxylase (TH). This is a complex and unstable brain enzyme that catalyzes the rate-limiting step in the synthesis of dopamine and other catecholamine neurotransmitters. We have characterized these TH-loaded NPs to evaluate their potential for ERT in diseases associated with TH dysfunction. Our results show that TH can be loaded into the lipid core maltodextrin NPs with high efficiency, and both stability and activity are maintained through loading and are preserved during storage. Binding to NPs also favored the uptake of TH to neuronal cells, both in cell culture and in the brain. The internalized NP-bound TH was active as we measured an increase in intracellular L-Dopa synthesis following NP uptake. Our approach seems promising for the use of catalytically active NPs in ERT to treat neurodegenerative and neuropsychiatric disorders characterized by dopamine deficiency, notably Parkinson’s disease.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29299922</pmid><doi>10.1021/acs.bioconjchem.7b00807</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1643-6506</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1043-1802 |
ispartof | Bioconjugate chemistry, 2018-02, Vol.29 (2), p.493-502 |
issn | 1043-1802 1520-4812 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04318354v1 |
source | MEDLINE; ACS Publications |
subjects | Animals Brain Brain - metabolism Catalysis Catecholamine Catecholamines Cell culture Cell Line Cells Chemical synthesis Dihydroxyphenylalanine Disorders Dopamine Drug Carriers - chemistry Enzyme Stability Enzyme Therapy Enzymes Female Genetic disorders Humans Hydroxylase Levodopa Life Sciences Lipids Male Maltodextrin Mental disorders Models, Molecular Movement disorders Nanoparticles Nanoparticles - chemistry Neurodegenerative diseases Neurological diseases Neurons Neurons - metabolism Neurotransmitters Parkinson Disease - drug therapy Parkinson Disease - enzymology Parkinson's disease Polysaccharides - chemistry Tissues Tyrosine Tyrosine 3-monooxygenase Tyrosine 3-Monooxygenase - administration & dosage Tyrosine 3-Monooxygenase - pharmacokinetics |
title | Stabilization of Human Tyrosine Hydroxylase in Maltodextrin Nanoparticles for Delivery to Neuronal Cells and Tissue |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T01%3A42%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stabilization%20of%20Human%20Tyrosine%20Hydroxylase%20in%20Maltodextrin%20Nanoparticles%20for%20Delivery%20to%20Neuronal%20Cells%20and%20Tissue&rft.jtitle=Bioconjugate%20chemistry&rft.au=Bezem,%20Maria%20T&rft.date=2018-02-21&rft.volume=29&rft.issue=2&rft.spage=493&rft.epage=502&rft.pages=493-502&rft.issn=1043-1802&rft.eissn=1520-4812&rft_id=info:doi/10.1021/acs.bioconjchem.7b00807&rft_dat=%3Cproquest_hal_p%3E1984751181%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2015727012&rft_id=info:pmid/29299922&rfr_iscdi=true |