Stabilization of Human Tyrosine Hydroxylase in Maltodextrin Nanoparticles for Delivery to Neuronal Cells and Tissue

Enzyme replacement therapy (ERT) is a therapeutic approach envisioned decades ago for the correction of genetic disorders, but ERT has been less successful for the correction of disorders with neurological manifestations. In this work, we have tested the functionality of nanoparticles (NP) composed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioconjugate chemistry 2018-02, Vol.29 (2), p.493-502
Hauptverfasser: Bezem, Maria T, Johannessen, Fredrik G, Jung-KC, Kunwar, Gundersen, Edvin Tang, Jorge-Finnigan, Ana, Ying, Ming, Betbeder, Didier, Herfindal, Lars, Martinez, Aurora
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 502
container_issue 2
container_start_page 493
container_title Bioconjugate chemistry
container_volume 29
creator Bezem, Maria T
Johannessen, Fredrik G
Jung-KC, Kunwar
Gundersen, Edvin Tang
Jorge-Finnigan, Ana
Ying, Ming
Betbeder, Didier
Herfindal, Lars
Martinez, Aurora
description Enzyme replacement therapy (ERT) is a therapeutic approach envisioned decades ago for the correction of genetic disorders, but ERT has been less successful for the correction of disorders with neurological manifestations. In this work, we have tested the functionality of nanoparticles (NP) composed of maltodextrin with a lipid core to bind and stabilize tyrosine hydroxylase (TH). This is a complex and unstable brain enzyme that catalyzes the rate-limiting step in the synthesis of dopamine and other catecholamine neurotransmitters. We have characterized these TH-loaded NPs to evaluate their potential for ERT in diseases associated with TH dysfunction. Our results show that TH can be loaded into the lipid core maltodextrin NPs with high efficiency, and both stability and activity are maintained through loading and are preserved during storage. Binding to NPs also favored the uptake of TH to neuronal cells, both in cell culture and in the brain. The internalized NP-bound TH was active as we measured an increase in intracellular L-Dopa synthesis following NP uptake. Our approach seems promising for the use of catalytically active NPs in ERT to treat neurodegenerative and neuropsychiatric disorders characterized by dopamine deficiency, notably Parkinson’s disease.
doi_str_mv 10.1021/acs.bioconjchem.7b00807
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04318354v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1984751181</sourcerecordid><originalsourceid>FETCH-LOGICAL-a419t-93e34e8fbd4ecf3dbb306a77a4a8591013d369954d8e313924558b7f01dcbd343</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhiMEoqXwF8ASFzhk67Gdxj5WW2CRlvbAcrYmsaN65cSLnVQNvx6vdlmhXnryh555PZ6nKD4AXQBlcIltWjQutGHYtve2X9QNpZLWL4pzqBgthQT2Mu-p4CVIys6KNyltKaUKJHtdnDHFlFKMnRfp54iN8-4Pji4MJHRkNfU4kM0cQ3KDJavZxPA4e0yWuIH8QD8GYx_HmA-3OIQdxtG13ibShUhurHcPNs5kDOTWTjEM6MnSep8IDoZsXEqTfVu86tAn--64XhS_vn7ZLFfl-u7b9-X1ukQBaiwVt1xY2TVG2Lbjpmk4vcK6RoGyUkCBG36lVCWMtBy4YqKqZFN3FEzbGC74RfH5kHuPXu-i6zHOOqDTq-u13t_l8YDklXiAzH46sLsYfk82jbp3qc2N42DDlDQoKeoKQO7Rj0_QbZhi_mjSjEJVs5oCy1R9oNo8yBRtd-oAqN471Nmh_s-hPjrMle-P-VPTW3Oq-yctA_wA7BNObz8X-xdZPK4l</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2015727012</pqid></control><display><type>article</type><title>Stabilization of Human Tyrosine Hydroxylase in Maltodextrin Nanoparticles for Delivery to Neuronal Cells and Tissue</title><source>MEDLINE</source><source>ACS Publications</source><creator>Bezem, Maria T ; Johannessen, Fredrik G ; Jung-KC, Kunwar ; Gundersen, Edvin Tang ; Jorge-Finnigan, Ana ; Ying, Ming ; Betbeder, Didier ; Herfindal, Lars ; Martinez, Aurora</creator><creatorcontrib>Bezem, Maria T ; Johannessen, Fredrik G ; Jung-KC, Kunwar ; Gundersen, Edvin Tang ; Jorge-Finnigan, Ana ; Ying, Ming ; Betbeder, Didier ; Herfindal, Lars ; Martinez, Aurora</creatorcontrib><description>Enzyme replacement therapy (ERT) is a therapeutic approach envisioned decades ago for the correction of genetic disorders, but ERT has been less successful for the correction of disorders with neurological manifestations. In this work, we have tested the functionality of nanoparticles (NP) composed of maltodextrin with a lipid core to bind and stabilize tyrosine hydroxylase (TH). This is a complex and unstable brain enzyme that catalyzes the rate-limiting step in the synthesis of dopamine and other catecholamine neurotransmitters. We have characterized these TH-loaded NPs to evaluate their potential for ERT in diseases associated with TH dysfunction. Our results show that TH can be loaded into the lipid core maltodextrin NPs with high efficiency, and both stability and activity are maintained through loading and are preserved during storage. Binding to NPs also favored the uptake of TH to neuronal cells, both in cell culture and in the brain. The internalized NP-bound TH was active as we measured an increase in intracellular L-Dopa synthesis following NP uptake. Our approach seems promising for the use of catalytically active NPs in ERT to treat neurodegenerative and neuropsychiatric disorders characterized by dopamine deficiency, notably Parkinson’s disease.</description><identifier>ISSN: 1043-1802</identifier><identifier>EISSN: 1520-4812</identifier><identifier>DOI: 10.1021/acs.bioconjchem.7b00807</identifier><identifier>PMID: 29299922</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Animals ; Brain ; Brain - metabolism ; Catalysis ; Catecholamine ; Catecholamines ; Cell culture ; Cell Line ; Cells ; Chemical synthesis ; Dihydroxyphenylalanine ; Disorders ; Dopamine ; Drug Carriers - chemistry ; Enzyme Stability ; Enzyme Therapy ; Enzymes ; Female ; Genetic disorders ; Humans ; Hydroxylase ; Levodopa ; Life Sciences ; Lipids ; Male ; Maltodextrin ; Mental disorders ; Models, Molecular ; Movement disorders ; Nanoparticles ; Nanoparticles - chemistry ; Neurodegenerative diseases ; Neurological diseases ; Neurons ; Neurons - metabolism ; Neurotransmitters ; Parkinson Disease - drug therapy ; Parkinson Disease - enzymology ; Parkinson's disease ; Polysaccharides - chemistry ; Tissues ; Tyrosine ; Tyrosine 3-monooxygenase ; Tyrosine 3-Monooxygenase - administration &amp; dosage ; Tyrosine 3-Monooxygenase - pharmacokinetics</subject><ispartof>Bioconjugate chemistry, 2018-02, Vol.29 (2), p.493-502</ispartof><rights>Copyright © 2018 American Chemical Society</rights><rights>Copyright American Chemical Society Feb 21, 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a419t-93e34e8fbd4ecf3dbb306a77a4a8591013d369954d8e313924558b7f01dcbd343</citedby><cites>FETCH-LOGICAL-a419t-93e34e8fbd4ecf3dbb306a77a4a8591013d369954d8e313924558b7f01dcbd343</cites><orcidid>0000-0003-1643-6506</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.bioconjchem.7b00807$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.bioconjchem.7b00807$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29299922$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.univ-lille.fr/hal-04318354$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bezem, Maria T</creatorcontrib><creatorcontrib>Johannessen, Fredrik G</creatorcontrib><creatorcontrib>Jung-KC, Kunwar</creatorcontrib><creatorcontrib>Gundersen, Edvin Tang</creatorcontrib><creatorcontrib>Jorge-Finnigan, Ana</creatorcontrib><creatorcontrib>Ying, Ming</creatorcontrib><creatorcontrib>Betbeder, Didier</creatorcontrib><creatorcontrib>Herfindal, Lars</creatorcontrib><creatorcontrib>Martinez, Aurora</creatorcontrib><title>Stabilization of Human Tyrosine Hydroxylase in Maltodextrin Nanoparticles for Delivery to Neuronal Cells and Tissue</title><title>Bioconjugate chemistry</title><addtitle>Bioconjugate Chem</addtitle><description>Enzyme replacement therapy (ERT) is a therapeutic approach envisioned decades ago for the correction of genetic disorders, but ERT has been less successful for the correction of disorders with neurological manifestations. In this work, we have tested the functionality of nanoparticles (NP) composed of maltodextrin with a lipid core to bind and stabilize tyrosine hydroxylase (TH). This is a complex and unstable brain enzyme that catalyzes the rate-limiting step in the synthesis of dopamine and other catecholamine neurotransmitters. We have characterized these TH-loaded NPs to evaluate their potential for ERT in diseases associated with TH dysfunction. Our results show that TH can be loaded into the lipid core maltodextrin NPs with high efficiency, and both stability and activity are maintained through loading and are preserved during storage. Binding to NPs also favored the uptake of TH to neuronal cells, both in cell culture and in the brain. The internalized NP-bound TH was active as we measured an increase in intracellular L-Dopa synthesis following NP uptake. Our approach seems promising for the use of catalytically active NPs in ERT to treat neurodegenerative and neuropsychiatric disorders characterized by dopamine deficiency, notably Parkinson’s disease.</description><subject>Animals</subject><subject>Brain</subject><subject>Brain - metabolism</subject><subject>Catalysis</subject><subject>Catecholamine</subject><subject>Catecholamines</subject><subject>Cell culture</subject><subject>Cell Line</subject><subject>Cells</subject><subject>Chemical synthesis</subject><subject>Dihydroxyphenylalanine</subject><subject>Disorders</subject><subject>Dopamine</subject><subject>Drug Carriers - chemistry</subject><subject>Enzyme Stability</subject><subject>Enzyme Therapy</subject><subject>Enzymes</subject><subject>Female</subject><subject>Genetic disorders</subject><subject>Humans</subject><subject>Hydroxylase</subject><subject>Levodopa</subject><subject>Life Sciences</subject><subject>Lipids</subject><subject>Male</subject><subject>Maltodextrin</subject><subject>Mental disorders</subject><subject>Models, Molecular</subject><subject>Movement disorders</subject><subject>Nanoparticles</subject><subject>Nanoparticles - chemistry</subject><subject>Neurodegenerative diseases</subject><subject>Neurological diseases</subject><subject>Neurons</subject><subject>Neurons - metabolism</subject><subject>Neurotransmitters</subject><subject>Parkinson Disease - drug therapy</subject><subject>Parkinson Disease - enzymology</subject><subject>Parkinson's disease</subject><subject>Polysaccharides - chemistry</subject><subject>Tissues</subject><subject>Tyrosine</subject><subject>Tyrosine 3-monooxygenase</subject><subject>Tyrosine 3-Monooxygenase - administration &amp; dosage</subject><subject>Tyrosine 3-Monooxygenase - pharmacokinetics</subject><issn>1043-1802</issn><issn>1520-4812</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1v1DAQhiMEoqXwF8ASFzhk67Gdxj5WW2CRlvbAcrYmsaN65cSLnVQNvx6vdlmhXnryh555PZ6nKD4AXQBlcIltWjQutGHYtve2X9QNpZLWL4pzqBgthQT2Mu-p4CVIys6KNyltKaUKJHtdnDHFlFKMnRfp54iN8-4Pji4MJHRkNfU4kM0cQ3KDJavZxPA4e0yWuIH8QD8GYx_HmA-3OIQdxtG13ibShUhurHcPNs5kDOTWTjEM6MnSep8IDoZsXEqTfVu86tAn--64XhS_vn7ZLFfl-u7b9-X1ukQBaiwVt1xY2TVG2Lbjpmk4vcK6RoGyUkCBG36lVCWMtBy4YqKqZFN3FEzbGC74RfH5kHuPXu-i6zHOOqDTq-u13t_l8YDklXiAzH46sLsYfk82jbp3qc2N42DDlDQoKeoKQO7Rj0_QbZhi_mjSjEJVs5oCy1R9oNo8yBRtd-oAqN471Nmh_s-hPjrMle-P-VPTW3Oq-yctA_wA7BNObz8X-xdZPK4l</recordid><startdate>20180221</startdate><enddate>20180221</enddate><creator>Bezem, Maria T</creator><creator>Johannessen, Fredrik G</creator><creator>Jung-KC, Kunwar</creator><creator>Gundersen, Edvin Tang</creator><creator>Jorge-Finnigan, Ana</creator><creator>Ying, Ming</creator><creator>Betbeder, Didier</creator><creator>Herfindal, Lars</creator><creator>Martinez, Aurora</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-1643-6506</orcidid></search><sort><creationdate>20180221</creationdate><title>Stabilization of Human Tyrosine Hydroxylase in Maltodextrin Nanoparticles for Delivery to Neuronal Cells and Tissue</title><author>Bezem, Maria T ; Johannessen, Fredrik G ; Jung-KC, Kunwar ; Gundersen, Edvin Tang ; Jorge-Finnigan, Ana ; Ying, Ming ; Betbeder, Didier ; Herfindal, Lars ; Martinez, Aurora</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a419t-93e34e8fbd4ecf3dbb306a77a4a8591013d369954d8e313924558b7f01dcbd343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Brain</topic><topic>Brain - metabolism</topic><topic>Catalysis</topic><topic>Catecholamine</topic><topic>Catecholamines</topic><topic>Cell culture</topic><topic>Cell Line</topic><topic>Cells</topic><topic>Chemical synthesis</topic><topic>Dihydroxyphenylalanine</topic><topic>Disorders</topic><topic>Dopamine</topic><topic>Drug Carriers - chemistry</topic><topic>Enzyme Stability</topic><topic>Enzyme Therapy</topic><topic>Enzymes</topic><topic>Female</topic><topic>Genetic disorders</topic><topic>Humans</topic><topic>Hydroxylase</topic><topic>Levodopa</topic><topic>Life Sciences</topic><topic>Lipids</topic><topic>Male</topic><topic>Maltodextrin</topic><topic>Mental disorders</topic><topic>Models, Molecular</topic><topic>Movement disorders</topic><topic>Nanoparticles</topic><topic>Nanoparticles - chemistry</topic><topic>Neurodegenerative diseases</topic><topic>Neurological diseases</topic><topic>Neurons</topic><topic>Neurons - metabolism</topic><topic>Neurotransmitters</topic><topic>Parkinson Disease - drug therapy</topic><topic>Parkinson Disease - enzymology</topic><topic>Parkinson's disease</topic><topic>Polysaccharides - chemistry</topic><topic>Tissues</topic><topic>Tyrosine</topic><topic>Tyrosine 3-monooxygenase</topic><topic>Tyrosine 3-Monooxygenase - administration &amp; dosage</topic><topic>Tyrosine 3-Monooxygenase - pharmacokinetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bezem, Maria T</creatorcontrib><creatorcontrib>Johannessen, Fredrik G</creatorcontrib><creatorcontrib>Jung-KC, Kunwar</creatorcontrib><creatorcontrib>Gundersen, Edvin Tang</creatorcontrib><creatorcontrib>Jorge-Finnigan, Ana</creatorcontrib><creatorcontrib>Ying, Ming</creatorcontrib><creatorcontrib>Betbeder, Didier</creatorcontrib><creatorcontrib>Herfindal, Lars</creatorcontrib><creatorcontrib>Martinez, Aurora</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Bioconjugate chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bezem, Maria T</au><au>Johannessen, Fredrik G</au><au>Jung-KC, Kunwar</au><au>Gundersen, Edvin Tang</au><au>Jorge-Finnigan, Ana</au><au>Ying, Ming</au><au>Betbeder, Didier</au><au>Herfindal, Lars</au><au>Martinez, Aurora</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stabilization of Human Tyrosine Hydroxylase in Maltodextrin Nanoparticles for Delivery to Neuronal Cells and Tissue</atitle><jtitle>Bioconjugate chemistry</jtitle><addtitle>Bioconjugate Chem</addtitle><date>2018-02-21</date><risdate>2018</risdate><volume>29</volume><issue>2</issue><spage>493</spage><epage>502</epage><pages>493-502</pages><issn>1043-1802</issn><eissn>1520-4812</eissn><abstract>Enzyme replacement therapy (ERT) is a therapeutic approach envisioned decades ago for the correction of genetic disorders, but ERT has been less successful for the correction of disorders with neurological manifestations. In this work, we have tested the functionality of nanoparticles (NP) composed of maltodextrin with a lipid core to bind and stabilize tyrosine hydroxylase (TH). This is a complex and unstable brain enzyme that catalyzes the rate-limiting step in the synthesis of dopamine and other catecholamine neurotransmitters. We have characterized these TH-loaded NPs to evaluate their potential for ERT in diseases associated with TH dysfunction. Our results show that TH can be loaded into the lipid core maltodextrin NPs with high efficiency, and both stability and activity are maintained through loading and are preserved during storage. Binding to NPs also favored the uptake of TH to neuronal cells, both in cell culture and in the brain. The internalized NP-bound TH was active as we measured an increase in intracellular L-Dopa synthesis following NP uptake. Our approach seems promising for the use of catalytically active NPs in ERT to treat neurodegenerative and neuropsychiatric disorders characterized by dopamine deficiency, notably Parkinson’s disease.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29299922</pmid><doi>10.1021/acs.bioconjchem.7b00807</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1643-6506</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1043-1802
ispartof Bioconjugate chemistry, 2018-02, Vol.29 (2), p.493-502
issn 1043-1802
1520-4812
language eng
recordid cdi_hal_primary_oai_HAL_hal_04318354v1
source MEDLINE; ACS Publications
subjects Animals
Brain
Brain - metabolism
Catalysis
Catecholamine
Catecholamines
Cell culture
Cell Line
Cells
Chemical synthesis
Dihydroxyphenylalanine
Disorders
Dopamine
Drug Carriers - chemistry
Enzyme Stability
Enzyme Therapy
Enzymes
Female
Genetic disorders
Humans
Hydroxylase
Levodopa
Life Sciences
Lipids
Male
Maltodextrin
Mental disorders
Models, Molecular
Movement disorders
Nanoparticles
Nanoparticles - chemistry
Neurodegenerative diseases
Neurological diseases
Neurons
Neurons - metabolism
Neurotransmitters
Parkinson Disease - drug therapy
Parkinson Disease - enzymology
Parkinson's disease
Polysaccharides - chemistry
Tissues
Tyrosine
Tyrosine 3-monooxygenase
Tyrosine 3-Monooxygenase - administration & dosage
Tyrosine 3-Monooxygenase - pharmacokinetics
title Stabilization of Human Tyrosine Hydroxylase in Maltodextrin Nanoparticles for Delivery to Neuronal Cells and Tissue
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T01%3A42%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stabilization%20of%20Human%20Tyrosine%20Hydroxylase%20in%20Maltodextrin%20Nanoparticles%20for%20Delivery%20to%20Neuronal%20Cells%20and%20Tissue&rft.jtitle=Bioconjugate%20chemistry&rft.au=Bezem,%20Maria%20T&rft.date=2018-02-21&rft.volume=29&rft.issue=2&rft.spage=493&rft.epage=502&rft.pages=493-502&rft.issn=1043-1802&rft.eissn=1520-4812&rft_id=info:doi/10.1021/acs.bioconjchem.7b00807&rft_dat=%3Cproquest_hal_p%3E1984751181%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2015727012&rft_id=info:pmid/29299922&rfr_iscdi=true