Local Heat Dissipation and Elasticity of Suspended Silicon Nanowires Revealed by Dual Scanning Electron and Thermal Microscopies
A novel combined setup, with a scanning thermal microscope (SThM) embedded in a scanning electron microscope (SEM), is used to characterize a suspended silicon rough nanowire (NW), which is epitaxially clamped at both sides and therefore monolithically integrated in a microfabricated device. The rou...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-04, Vol.20 (16), p.e2305831-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 16 |
container_start_page | e2305831 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 20 |
creator | Sojo‐Gordillo, Jose M. Gadea‐Diez, Gerard Renahy, David Salleras, Marc Duque‐Sierra, Carolina Vincent, Pascal Fonseca, Luis Chapuis, Pierre‐Olivier Morata, Alex Gomès, Séverine Tarancón, Albert |
description | A novel combined setup, with a scanning thermal microscope (SThM) embedded in a scanning electron microscope (SEM), is used to characterize a suspended silicon rough nanowire (NW), which is epitaxially clamped at both sides and therefore monolithically integrated in a microfabricated device. The rough nature of the NW surface, which prohibits vacuum‐SThM due to loose contact for heat dissipation, is circumvented by decorating the NW with periodic platinum dots. Reproducible approaches over these dots, enabled by the live feedback image provided by the SEM, yield a strong improvement in thermal contact resistance and a higher accuracy in its estimation. The results—thermal resistance at the tip‐sample contact of 188±3.7K µW−1 and thermal conductivity of the NW of 13.7±1.6W m−1 K−1—are obtained by performing a series of approach curves on the dots. Noteworthy, the technique allows measuring elastic properties at the same time—the moment of inertia of the NW is found to be (6.1±1.0) × 10−30m4—which permits to correlate the respective effects of the rough shell on heat dissipation and on the NW stiffness. The work highlights the capabilities of the dual SThM/SEM instrument, in particular the interest of systematic approach curves with well‐positioned and monitored tip motion.
A combined scanning thermal microscope/scanning electron microscope is used to characterize an expitaxially suspended silicon nanowire. Mechanical and thermal properties are measured simultaneously. Effects of the rough shell on heat dissipation and on the nanowire stiffness are studied. |
doi_str_mv | 10.1002/smll.202305831 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04309426v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2902941914</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4021-63ba4d5dd07d48d00721c090020de41ea9a748513443b6d4da502c1315bcd8153</originalsourceid><addsrcrecordid>eNqFkUFv1DAQRi0EoqVw5YgscYHDLjO2kzjHqi1dpBQktpwtx_ZSV04c4qTV3vjp9WqXReLCyZbn-WlmPkLeIiwRgH1KXQhLBoxDITk-I6dYIl-UktXPj3eEE_IqpXsAjkxUL8kJlyBlwctT8ruJRge6cnqilz4lP-jJx57q3tKroNPkjZ-2NG7oek6D662zdO2DN5n5qvv46EeX6Hf34HTIpXZLL-fsWxvd977_mR3OTONBeHvnxi5Xb7wZYzJx8C69Ji82OiT35nCekR-fr24vVovm2_WXi_NmYQQwXJS81cIW1kJlhbQAFUMDdV4BWCfQ6VpXQhbIheBtaYXVBTCDHIvWWIkFPyMf9947HdQw-k6PWxW1V6vzRu3eQHCoBSsfMLMf9uwwxl-zS5PqfDIuBN27OCfFamC1wBpFRt__g97HeezzJIqDAJSV4DxTyz21mzuNbnPsAEHtclS7HNUxx_zh3UE7t52zR_xPcBmo98CjD277H51a3zTNX_kTGp-osQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3040187433</pqid></control><display><type>article</type><title>Local Heat Dissipation and Elasticity of Suspended Silicon Nanowires Revealed by Dual Scanning Electron and Thermal Microscopies</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Sojo‐Gordillo, Jose M. ; Gadea‐Diez, Gerard ; Renahy, David ; Salleras, Marc ; Duque‐Sierra, Carolina ; Vincent, Pascal ; Fonseca, Luis ; Chapuis, Pierre‐Olivier ; Morata, Alex ; Gomès, Séverine ; Tarancón, Albert</creator><creatorcontrib>Sojo‐Gordillo, Jose M. ; Gadea‐Diez, Gerard ; Renahy, David ; Salleras, Marc ; Duque‐Sierra, Carolina ; Vincent, Pascal ; Fonseca, Luis ; Chapuis, Pierre‐Olivier ; Morata, Alex ; Gomès, Séverine ; Tarancón, Albert</creatorcontrib><description>A novel combined setup, with a scanning thermal microscope (SThM) embedded in a scanning electron microscope (SEM), is used to characterize a suspended silicon rough nanowire (NW), which is epitaxially clamped at both sides and therefore monolithically integrated in a microfabricated device. The rough nature of the NW surface, which prohibits vacuum‐SThM due to loose contact for heat dissipation, is circumvented by decorating the NW with periodic platinum dots. Reproducible approaches over these dots, enabled by the live feedback image provided by the SEM, yield a strong improvement in thermal contact resistance and a higher accuracy in its estimation. The results—thermal resistance at the tip‐sample contact of 188±3.7K µW−1 and thermal conductivity of the NW of 13.7±1.6W m−1 K−1—are obtained by performing a series of approach curves on the dots. Noteworthy, the technique allows measuring elastic properties at the same time—the moment of inertia of the NW is found to be (6.1±1.0) × 10−30m4—which permits to correlate the respective effects of the rough shell on heat dissipation and on the NW stiffness. The work highlights the capabilities of the dual SThM/SEM instrument, in particular the interest of systematic approach curves with well‐positioned and monitored tip motion.
A combined scanning thermal microscope/scanning electron microscope is used to characterize an expitaxially suspended silicon nanowire. Mechanical and thermal properties are measured simultaneously. Effects of the rough shell on heat dissipation and on the nanowire stiffness are studied.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202305831</identifier><identifier>PMID: 38088536</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Combined scanning thermal microscope/scanning electron microscope ; Condensed Matter ; Contact resistance ; Dissipation ; Elastic properties ; Electron microscopes ; Heat transfer ; mechanical stiffness ; Moments of inertia ; Nanowires ; Other ; Physics ; rough nanowire ; Scanning electron microscopy ; Silicon ; Thermal conductivity ; thermal contact ; Thermal contact resistance ; Thermal resistance</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2024-04, Vol.20 (16), p.e2305831-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2023 Wiley‐VCH GmbH.</rights><rights>2024 Wiley‐VCH GmbH</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4021-63ba4d5dd07d48d00721c090020de41ea9a748513443b6d4da502c1315bcd8153</cites><orcidid>0000-0001-5405-9575 ; 0000-0002-1394-8074 ; 0000-0002-6264-2530 ; 0000-0002-3300-4636 ; 0000-0003-0152-9793 ; 0000-0001-8812-8268 ; 0000-0002-1173-7177 ; 0000-0002-2469-8859 ; 0000-0003-1649-9646 ; 0000-0002-1933-2406</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202305831$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202305831$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38088536$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04309426$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Sojo‐Gordillo, Jose M.</creatorcontrib><creatorcontrib>Gadea‐Diez, Gerard</creatorcontrib><creatorcontrib>Renahy, David</creatorcontrib><creatorcontrib>Salleras, Marc</creatorcontrib><creatorcontrib>Duque‐Sierra, Carolina</creatorcontrib><creatorcontrib>Vincent, Pascal</creatorcontrib><creatorcontrib>Fonseca, Luis</creatorcontrib><creatorcontrib>Chapuis, Pierre‐Olivier</creatorcontrib><creatorcontrib>Morata, Alex</creatorcontrib><creatorcontrib>Gomès, Séverine</creatorcontrib><creatorcontrib>Tarancón, Albert</creatorcontrib><title>Local Heat Dissipation and Elasticity of Suspended Silicon Nanowires Revealed by Dual Scanning Electron and Thermal Microscopies</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>A novel combined setup, with a scanning thermal microscope (SThM) embedded in a scanning electron microscope (SEM), is used to characterize a suspended silicon rough nanowire (NW), which is epitaxially clamped at both sides and therefore monolithically integrated in a microfabricated device. The rough nature of the NW surface, which prohibits vacuum‐SThM due to loose contact for heat dissipation, is circumvented by decorating the NW with periodic platinum dots. Reproducible approaches over these dots, enabled by the live feedback image provided by the SEM, yield a strong improvement in thermal contact resistance and a higher accuracy in its estimation. The results—thermal resistance at the tip‐sample contact of 188±3.7K µW−1 and thermal conductivity of the NW of 13.7±1.6W m−1 K−1—are obtained by performing a series of approach curves on the dots. Noteworthy, the technique allows measuring elastic properties at the same time—the moment of inertia of the NW is found to be (6.1±1.0) × 10−30m4—which permits to correlate the respective effects of the rough shell on heat dissipation and on the NW stiffness. The work highlights the capabilities of the dual SThM/SEM instrument, in particular the interest of systematic approach curves with well‐positioned and monitored tip motion.
A combined scanning thermal microscope/scanning electron microscope is used to characterize an expitaxially suspended silicon nanowire. Mechanical and thermal properties are measured simultaneously. Effects of the rough shell on heat dissipation and on the nanowire stiffness are studied.</description><subject>Combined scanning thermal microscope/scanning electron microscope</subject><subject>Condensed Matter</subject><subject>Contact resistance</subject><subject>Dissipation</subject><subject>Elastic properties</subject><subject>Electron microscopes</subject><subject>Heat transfer</subject><subject>mechanical stiffness</subject><subject>Moments of inertia</subject><subject>Nanowires</subject><subject>Other</subject><subject>Physics</subject><subject>rough nanowire</subject><subject>Scanning electron microscopy</subject><subject>Silicon</subject><subject>Thermal conductivity</subject><subject>thermal contact</subject><subject>Thermal contact resistance</subject><subject>Thermal resistance</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkUFv1DAQRi0EoqVw5YgscYHDLjO2kzjHqi1dpBQktpwtx_ZSV04c4qTV3vjp9WqXReLCyZbn-WlmPkLeIiwRgH1KXQhLBoxDITk-I6dYIl-UktXPj3eEE_IqpXsAjkxUL8kJlyBlwctT8ruJRge6cnqilz4lP-jJx57q3tKroNPkjZ-2NG7oek6D662zdO2DN5n5qvv46EeX6Hf34HTIpXZLL-fsWxvd977_mR3OTONBeHvnxi5Xb7wZYzJx8C69Ji82OiT35nCekR-fr24vVovm2_WXi_NmYQQwXJS81cIW1kJlhbQAFUMDdV4BWCfQ6VpXQhbIheBtaYXVBTCDHIvWWIkFPyMf9947HdQw-k6PWxW1V6vzRu3eQHCoBSsfMLMf9uwwxl-zS5PqfDIuBN27OCfFamC1wBpFRt__g97HeezzJIqDAJSV4DxTyz21mzuNbnPsAEHtclS7HNUxx_zh3UE7t52zR_xPcBmo98CjD277H51a3zTNX_kTGp-osQ</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Sojo‐Gordillo, Jose M.</creator><creator>Gadea‐Diez, Gerard</creator><creator>Renahy, David</creator><creator>Salleras, Marc</creator><creator>Duque‐Sierra, Carolina</creator><creator>Vincent, Pascal</creator><creator>Fonseca, Luis</creator><creator>Chapuis, Pierre‐Olivier</creator><creator>Morata, Alex</creator><creator>Gomès, Séverine</creator><creator>Tarancón, Albert</creator><general>Wiley Subscription Services, Inc</general><general>Wiley-VCH Verlag</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-5405-9575</orcidid><orcidid>https://orcid.org/0000-0002-1394-8074</orcidid><orcidid>https://orcid.org/0000-0002-6264-2530</orcidid><orcidid>https://orcid.org/0000-0002-3300-4636</orcidid><orcidid>https://orcid.org/0000-0003-0152-9793</orcidid><orcidid>https://orcid.org/0000-0001-8812-8268</orcidid><orcidid>https://orcid.org/0000-0002-1173-7177</orcidid><orcidid>https://orcid.org/0000-0002-2469-8859</orcidid><orcidid>https://orcid.org/0000-0003-1649-9646</orcidid><orcidid>https://orcid.org/0000-0002-1933-2406</orcidid></search><sort><creationdate>20240401</creationdate><title>Local Heat Dissipation and Elasticity of Suspended Silicon Nanowires Revealed by Dual Scanning Electron and Thermal Microscopies</title><author>Sojo‐Gordillo, Jose M. ; Gadea‐Diez, Gerard ; Renahy, David ; Salleras, Marc ; Duque‐Sierra, Carolina ; Vincent, Pascal ; Fonseca, Luis ; Chapuis, Pierre‐Olivier ; Morata, Alex ; Gomès, Séverine ; Tarancón, Albert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4021-63ba4d5dd07d48d00721c090020de41ea9a748513443b6d4da502c1315bcd8153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Combined scanning thermal microscope/scanning electron microscope</topic><topic>Condensed Matter</topic><topic>Contact resistance</topic><topic>Dissipation</topic><topic>Elastic properties</topic><topic>Electron microscopes</topic><topic>Heat transfer</topic><topic>mechanical stiffness</topic><topic>Moments of inertia</topic><topic>Nanowires</topic><topic>Other</topic><topic>Physics</topic><topic>rough nanowire</topic><topic>Scanning electron microscopy</topic><topic>Silicon</topic><topic>Thermal conductivity</topic><topic>thermal contact</topic><topic>Thermal contact resistance</topic><topic>Thermal resistance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sojo‐Gordillo, Jose M.</creatorcontrib><creatorcontrib>Gadea‐Diez, Gerard</creatorcontrib><creatorcontrib>Renahy, David</creatorcontrib><creatorcontrib>Salleras, Marc</creatorcontrib><creatorcontrib>Duque‐Sierra, Carolina</creatorcontrib><creatorcontrib>Vincent, Pascal</creatorcontrib><creatorcontrib>Fonseca, Luis</creatorcontrib><creatorcontrib>Chapuis, Pierre‐Olivier</creatorcontrib><creatorcontrib>Morata, Alex</creatorcontrib><creatorcontrib>Gomès, Séverine</creatorcontrib><creatorcontrib>Tarancón, Albert</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sojo‐Gordillo, Jose M.</au><au>Gadea‐Diez, Gerard</au><au>Renahy, David</au><au>Salleras, Marc</au><au>Duque‐Sierra, Carolina</au><au>Vincent, Pascal</au><au>Fonseca, Luis</au><au>Chapuis, Pierre‐Olivier</au><au>Morata, Alex</au><au>Gomès, Séverine</au><au>Tarancón, Albert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local Heat Dissipation and Elasticity of Suspended Silicon Nanowires Revealed by Dual Scanning Electron and Thermal Microscopies</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2024-04-01</date><risdate>2024</risdate><volume>20</volume><issue>16</issue><spage>e2305831</spage><epage>n/a</epage><pages>e2305831-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>A novel combined setup, with a scanning thermal microscope (SThM) embedded in a scanning electron microscope (SEM), is used to characterize a suspended silicon rough nanowire (NW), which is epitaxially clamped at both sides and therefore monolithically integrated in a microfabricated device. The rough nature of the NW surface, which prohibits vacuum‐SThM due to loose contact for heat dissipation, is circumvented by decorating the NW with periodic platinum dots. Reproducible approaches over these dots, enabled by the live feedback image provided by the SEM, yield a strong improvement in thermal contact resistance and a higher accuracy in its estimation. The results—thermal resistance at the tip‐sample contact of 188±3.7K µW−1 and thermal conductivity of the NW of 13.7±1.6W m−1 K−1—are obtained by performing a series of approach curves on the dots. Noteworthy, the technique allows measuring elastic properties at the same time—the moment of inertia of the NW is found to be (6.1±1.0) × 10−30m4—which permits to correlate the respective effects of the rough shell on heat dissipation and on the NW stiffness. The work highlights the capabilities of the dual SThM/SEM instrument, in particular the interest of systematic approach curves with well‐positioned and monitored tip motion.
A combined scanning thermal microscope/scanning electron microscope is used to characterize an expitaxially suspended silicon nanowire. Mechanical and thermal properties are measured simultaneously. Effects of the rough shell on heat dissipation and on the nanowire stiffness are studied.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38088536</pmid><doi>10.1002/smll.202305831</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-5405-9575</orcidid><orcidid>https://orcid.org/0000-0002-1394-8074</orcidid><orcidid>https://orcid.org/0000-0002-6264-2530</orcidid><orcidid>https://orcid.org/0000-0002-3300-4636</orcidid><orcidid>https://orcid.org/0000-0003-0152-9793</orcidid><orcidid>https://orcid.org/0000-0001-8812-8268</orcidid><orcidid>https://orcid.org/0000-0002-1173-7177</orcidid><orcidid>https://orcid.org/0000-0002-2469-8859</orcidid><orcidid>https://orcid.org/0000-0003-1649-9646</orcidid><orcidid>https://orcid.org/0000-0002-1933-2406</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2024-04, Vol.20 (16), p.e2305831-n/a |
issn | 1613-6810 1613-6829 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04309426v1 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Combined scanning thermal microscope/scanning electron microscope Condensed Matter Contact resistance Dissipation Elastic properties Electron microscopes Heat transfer mechanical stiffness Moments of inertia Nanowires Other Physics rough nanowire Scanning electron microscopy Silicon Thermal conductivity thermal contact Thermal contact resistance Thermal resistance |
title | Local Heat Dissipation and Elasticity of Suspended Silicon Nanowires Revealed by Dual Scanning Electron and Thermal Microscopies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T17%3A14%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20Heat%20Dissipation%20and%20Elasticity%20of%20Suspended%20Silicon%20Nanowires%20Revealed%20by%20Dual%20Scanning%20Electron%20and%20Thermal%20Microscopies&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Sojo%E2%80%90Gordillo,%20Jose%20M.&rft.date=2024-04-01&rft.volume=20&rft.issue=16&rft.spage=e2305831&rft.epage=n/a&rft.pages=e2305831-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202305831&rft_dat=%3Cproquest_hal_p%3E2902941914%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3040187433&rft_id=info:pmid/38088536&rfr_iscdi=true |