S‐Nitrosylation of the histone deacetylase HDA19 stimulates its activity to enhance plant stress tolerance in Arabidopsis

SUMMARY Arabidopsis histone deacetylase HDA19 is required for gene expression programs of a large spectrum of plant developmental and stress‐responsive pathways. How this enzyme senses cellular environment to control its activity remains unclear. In this work, we show that HDA19 is post‐translationa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Plant journal : for cell and molecular biology 2023-05, Vol.114 (4), p.836-854
Hauptverfasser: Zheng, Yu, Li, Zhenting, Cui, Xiaoyun, Yang, Zheng, Bao, Chun, Pan, Lei, Liu, Xiaoyun, Chatel‐Innocenti, Gilles, Vanacker, Hélène, Noctor, Graham, Dard, Avilien, Reichheld, Jean‐Philippe, Issakidis‐Bourguet, Emmanuelle, Zhou, Dao‐Xiu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 854
container_issue 4
container_start_page 836
container_title The Plant journal : for cell and molecular biology
container_volume 114
creator Zheng, Yu
Li, Zhenting
Cui, Xiaoyun
Yang, Zheng
Bao, Chun
Pan, Lei
Liu, Xiaoyun
Chatel‐Innocenti, Gilles
Vanacker, Hélène
Noctor, Graham
Dard, Avilien
Reichheld, Jean‐Philippe
Issakidis‐Bourguet, Emmanuelle
Zhou, Dao‐Xiu
description SUMMARY Arabidopsis histone deacetylase HDA19 is required for gene expression programs of a large spectrum of plant developmental and stress‐responsive pathways. How this enzyme senses cellular environment to control its activity remains unclear. In this work, we show that HDA19 is post‐translationally modified by S‐nitrosylation at 4 Cysteine (Cys) residues. HDA19 S‐nitrosylation depends on the cellular nitric oxide level, which is enhanced under oxidative stress. We find that HDA19 is required for cellular redox homeostasis and plant tolerance to oxidative stress, which in turn stimulates its nuclear enrichment, S‐nitrosylation and epigenetic functions including binding to genomic targets, histone deacetylation and gene repression. The Cys137 of the protein is involved in basal and stress‐induced S‐nitrosylation, and is required for HDA19 functions in developmental, stress‐responsive and epigenetic controls. Together, these results indicate that S‐nitrosylation regulates HDA19 activity and is a mechanism of redox‐sensing for chromatin regulation of plant tolerance to stress. Significance Statement The stress‐induced S‐nitrosylation regulates HDA19 activity to deacetylate H3K14 and to repress expression of subsets of genes under stress.
doi_str_mv 10.1111/tpj.16174
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04304589v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2784837091</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4224-4f2ca3dc725e530362efcd5e4c151a16f9440c9bf7f92d933e4d22bbff4750af3</originalsourceid><addsrcrecordid>eNp1kd9qFDEYxYModq1e-AIS8MZeTJt_k5lcLq11lUUFK3gXMpkvbJbZyZhkKos3PoLP6JOYdmsFwdwEzvfj5Ds5CD2n5JSWc5an7SmVtBEP0IJyWVec8i8P0YIoSapGUHaEnqS0JYQ2XIrH6IjLtuWtbBbo-6dfP36-9zmGtB9M9mHEweG8AbzxKYcRcA_GQi7DBHh1saQKp-x3c4EhYZ8TNjb7a5_3OAcM48aMFvA0mDEXMEJKRR8g3sp-xMtoOt-HKfn0FD1yZkjw7O4-Rp8vX1-dr6r1hzdvz5frygrGRCUcs4b3tmE11JxwycDZvgZhaU0NlU4JQazqXOMU6xXnIHrGus450dTEOH6MTg6-GzPoKfqdiXsdjNer5VrfaERwIupWXbPCvjqwUwxfZ0hZ73yyMJQ8EOakWdOKljdE0YK-_AfdhjmOJYlmLVVUMi7o38dt-eIUwd1vQIm-aU-X9vRte4V9cec4dzvo78k_dRXg7AB88wPs_--krz6-O1j-BrHCpVM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2819162341</pqid></control><display><type>article</type><title>S‐Nitrosylation of the histone deacetylase HDA19 stimulates its activity to enhance plant stress tolerance in Arabidopsis</title><source>MEDLINE</source><source>IngentaConnect Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Zheng, Yu ; Li, Zhenting ; Cui, Xiaoyun ; Yang, Zheng ; Bao, Chun ; Pan, Lei ; Liu, Xiaoyun ; Chatel‐Innocenti, Gilles ; Vanacker, Hélène ; Noctor, Graham ; Dard, Avilien ; Reichheld, Jean‐Philippe ; Issakidis‐Bourguet, Emmanuelle ; Zhou, Dao‐Xiu</creator><creatorcontrib>Zheng, Yu ; Li, Zhenting ; Cui, Xiaoyun ; Yang, Zheng ; Bao, Chun ; Pan, Lei ; Liu, Xiaoyun ; Chatel‐Innocenti, Gilles ; Vanacker, Hélène ; Noctor, Graham ; Dard, Avilien ; Reichheld, Jean‐Philippe ; Issakidis‐Bourguet, Emmanuelle ; Zhou, Dao‐Xiu</creatorcontrib><description>SUMMARY Arabidopsis histone deacetylase HDA19 is required for gene expression programs of a large spectrum of plant developmental and stress‐responsive pathways. How this enzyme senses cellular environment to control its activity remains unclear. In this work, we show that HDA19 is post‐translationally modified by S‐nitrosylation at 4 Cysteine (Cys) residues. HDA19 S‐nitrosylation depends on the cellular nitric oxide level, which is enhanced under oxidative stress. We find that HDA19 is required for cellular redox homeostasis and plant tolerance to oxidative stress, which in turn stimulates its nuclear enrichment, S‐nitrosylation and epigenetic functions including binding to genomic targets, histone deacetylation and gene repression. The Cys137 of the protein is involved in basal and stress‐induced S‐nitrosylation, and is required for HDA19 functions in developmental, stress‐responsive and epigenetic controls. Together, these results indicate that S‐nitrosylation regulates HDA19 activity and is a mechanism of redox‐sensing for chromatin regulation of plant tolerance to stress. Significance Statement The stress‐induced S‐nitrosylation regulates HDA19 activity to deacetylate H3K14 and to repress expression of subsets of genes under stress.</description><identifier>ISSN: 0960-7412</identifier><identifier>EISSN: 1365-313X</identifier><identifier>DOI: 10.1111/tpj.16174</identifier><identifier>PMID: 36883867</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Arabidopsis ; Arabidopsis - metabolism ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Biochemistry ; Biochemistry, Molecular Biology ; Botanics ; Chromatin ; Chromatin - metabolism ; Deacetylation ; Epigenetics ; Gene expression ; HDA19 ; Histone deacetylase ; Histone Deacetylases - genetics ; Histone Deacetylases - metabolism ; Histones ; Homeostasis ; Life Sciences ; Nitric oxide ; Nitric Oxide - metabolism ; Oxidative stress ; Plant stress ; post‐translational modifications ; S‐nitrosylation ; Vegetal Biology</subject><ispartof>The Plant journal : for cell and molecular biology, 2023-05, Vol.114 (4), p.836-854</ispartof><rights>2023 Society for Experimental Biology and John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2023 Society for Experimental Biology and John Wiley &amp; Sons Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4224-4f2ca3dc725e530362efcd5e4c151a16f9440c9bf7f92d933e4d22bbff4750af3</citedby><cites>FETCH-LOGICAL-c4224-4f2ca3dc725e530362efcd5e4c151a16f9440c9bf7f92d933e4d22bbff4750af3</cites><orcidid>0000-0003-2639-3765 ; 0000-0001-6884-0602 ; 0000-0001-5238-5780 ; 0000-0002-1540-0598 ; 0000-0002-2091-1798 ; 0000-0002-6144-4364</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Ftpj.16174$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Ftpj.16174$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36883867$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04304589$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Zheng, Yu</creatorcontrib><creatorcontrib>Li, Zhenting</creatorcontrib><creatorcontrib>Cui, Xiaoyun</creatorcontrib><creatorcontrib>Yang, Zheng</creatorcontrib><creatorcontrib>Bao, Chun</creatorcontrib><creatorcontrib>Pan, Lei</creatorcontrib><creatorcontrib>Liu, Xiaoyun</creatorcontrib><creatorcontrib>Chatel‐Innocenti, Gilles</creatorcontrib><creatorcontrib>Vanacker, Hélène</creatorcontrib><creatorcontrib>Noctor, Graham</creatorcontrib><creatorcontrib>Dard, Avilien</creatorcontrib><creatorcontrib>Reichheld, Jean‐Philippe</creatorcontrib><creatorcontrib>Issakidis‐Bourguet, Emmanuelle</creatorcontrib><creatorcontrib>Zhou, Dao‐Xiu</creatorcontrib><title>S‐Nitrosylation of the histone deacetylase HDA19 stimulates its activity to enhance plant stress tolerance in Arabidopsis</title><title>The Plant journal : for cell and molecular biology</title><addtitle>Plant J</addtitle><description>SUMMARY Arabidopsis histone deacetylase HDA19 is required for gene expression programs of a large spectrum of plant developmental and stress‐responsive pathways. How this enzyme senses cellular environment to control its activity remains unclear. In this work, we show that HDA19 is post‐translationally modified by S‐nitrosylation at 4 Cysteine (Cys) residues. HDA19 S‐nitrosylation depends on the cellular nitric oxide level, which is enhanced under oxidative stress. We find that HDA19 is required for cellular redox homeostasis and plant tolerance to oxidative stress, which in turn stimulates its nuclear enrichment, S‐nitrosylation and epigenetic functions including binding to genomic targets, histone deacetylation and gene repression. The Cys137 of the protein is involved in basal and stress‐induced S‐nitrosylation, and is required for HDA19 functions in developmental, stress‐responsive and epigenetic controls. Together, these results indicate that S‐nitrosylation regulates HDA19 activity and is a mechanism of redox‐sensing for chromatin regulation of plant tolerance to stress. Significance Statement The stress‐induced S‐nitrosylation regulates HDA19 activity to deacetylate H3K14 and to repress expression of subsets of genes under stress.</description><subject>Arabidopsis</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Biochemistry</subject><subject>Biochemistry, Molecular Biology</subject><subject>Botanics</subject><subject>Chromatin</subject><subject>Chromatin - metabolism</subject><subject>Deacetylation</subject><subject>Epigenetics</subject><subject>Gene expression</subject><subject>HDA19</subject><subject>Histone deacetylase</subject><subject>Histone Deacetylases - genetics</subject><subject>Histone Deacetylases - metabolism</subject><subject>Histones</subject><subject>Homeostasis</subject><subject>Life Sciences</subject><subject>Nitric oxide</subject><subject>Nitric Oxide - metabolism</subject><subject>Oxidative stress</subject><subject>Plant stress</subject><subject>post‐translational modifications</subject><subject>S‐nitrosylation</subject><subject>Vegetal Biology</subject><issn>0960-7412</issn><issn>1365-313X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kd9qFDEYxYModq1e-AIS8MZeTJt_k5lcLq11lUUFK3gXMpkvbJbZyZhkKos3PoLP6JOYdmsFwdwEzvfj5Ds5CD2n5JSWc5an7SmVtBEP0IJyWVec8i8P0YIoSapGUHaEnqS0JYQ2XIrH6IjLtuWtbBbo-6dfP36-9zmGtB9M9mHEweG8AbzxKYcRcA_GQi7DBHh1saQKp-x3c4EhYZ8TNjb7a5_3OAcM48aMFvA0mDEXMEJKRR8g3sp-xMtoOt-HKfn0FD1yZkjw7O4-Rp8vX1-dr6r1hzdvz5frygrGRCUcs4b3tmE11JxwycDZvgZhaU0NlU4JQazqXOMU6xXnIHrGus450dTEOH6MTg6-GzPoKfqdiXsdjNer5VrfaERwIupWXbPCvjqwUwxfZ0hZ73yyMJQ8EOakWdOKljdE0YK-_AfdhjmOJYlmLVVUMi7o38dt-eIUwd1vQIm-aU-X9vRte4V9cec4dzvo78k_dRXg7AB88wPs_--krz6-O1j-BrHCpVM</recordid><startdate>202305</startdate><enddate>202305</enddate><creator>Zheng, Yu</creator><creator>Li, Zhenting</creator><creator>Cui, Xiaoyun</creator><creator>Yang, Zheng</creator><creator>Bao, Chun</creator><creator>Pan, Lei</creator><creator>Liu, Xiaoyun</creator><creator>Chatel‐Innocenti, Gilles</creator><creator>Vanacker, Hélène</creator><creator>Noctor, Graham</creator><creator>Dard, Avilien</creator><creator>Reichheld, Jean‐Philippe</creator><creator>Issakidis‐Bourguet, Emmanuelle</creator><creator>Zhou, Dao‐Xiu</creator><general>Blackwell Publishing Ltd</general><general>Wiley</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-2639-3765</orcidid><orcidid>https://orcid.org/0000-0001-6884-0602</orcidid><orcidid>https://orcid.org/0000-0001-5238-5780</orcidid><orcidid>https://orcid.org/0000-0002-1540-0598</orcidid><orcidid>https://orcid.org/0000-0002-2091-1798</orcidid><orcidid>https://orcid.org/0000-0002-6144-4364</orcidid></search><sort><creationdate>202305</creationdate><title>S‐Nitrosylation of the histone deacetylase HDA19 stimulates its activity to enhance plant stress tolerance in Arabidopsis</title><author>Zheng, Yu ; Li, Zhenting ; Cui, Xiaoyun ; Yang, Zheng ; Bao, Chun ; Pan, Lei ; Liu, Xiaoyun ; Chatel‐Innocenti, Gilles ; Vanacker, Hélène ; Noctor, Graham ; Dard, Avilien ; Reichheld, Jean‐Philippe ; Issakidis‐Bourguet, Emmanuelle ; Zhou, Dao‐Xiu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4224-4f2ca3dc725e530362efcd5e4c151a16f9440c9bf7f92d933e4d22bbff4750af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Arabidopsis</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Biochemistry</topic><topic>Biochemistry, Molecular Biology</topic><topic>Botanics</topic><topic>Chromatin</topic><topic>Chromatin - metabolism</topic><topic>Deacetylation</topic><topic>Epigenetics</topic><topic>Gene expression</topic><topic>HDA19</topic><topic>Histone deacetylase</topic><topic>Histone Deacetylases - genetics</topic><topic>Histone Deacetylases - metabolism</topic><topic>Histones</topic><topic>Homeostasis</topic><topic>Life Sciences</topic><topic>Nitric oxide</topic><topic>Nitric Oxide - metabolism</topic><topic>Oxidative stress</topic><topic>Plant stress</topic><topic>post‐translational modifications</topic><topic>S‐nitrosylation</topic><topic>Vegetal Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Yu</creatorcontrib><creatorcontrib>Li, Zhenting</creatorcontrib><creatorcontrib>Cui, Xiaoyun</creatorcontrib><creatorcontrib>Yang, Zheng</creatorcontrib><creatorcontrib>Bao, Chun</creatorcontrib><creatorcontrib>Pan, Lei</creatorcontrib><creatorcontrib>Liu, Xiaoyun</creatorcontrib><creatorcontrib>Chatel‐Innocenti, Gilles</creatorcontrib><creatorcontrib>Vanacker, Hélène</creatorcontrib><creatorcontrib>Noctor, Graham</creatorcontrib><creatorcontrib>Dard, Avilien</creatorcontrib><creatorcontrib>Reichheld, Jean‐Philippe</creatorcontrib><creatorcontrib>Issakidis‐Bourguet, Emmanuelle</creatorcontrib><creatorcontrib>Zhou, Dao‐Xiu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>The Plant journal : for cell and molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Yu</au><au>Li, Zhenting</au><au>Cui, Xiaoyun</au><au>Yang, Zheng</au><au>Bao, Chun</au><au>Pan, Lei</au><au>Liu, Xiaoyun</au><au>Chatel‐Innocenti, Gilles</au><au>Vanacker, Hélène</au><au>Noctor, Graham</au><au>Dard, Avilien</au><au>Reichheld, Jean‐Philippe</au><au>Issakidis‐Bourguet, Emmanuelle</au><au>Zhou, Dao‐Xiu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>S‐Nitrosylation of the histone deacetylase HDA19 stimulates its activity to enhance plant stress tolerance in Arabidopsis</atitle><jtitle>The Plant journal : for cell and molecular biology</jtitle><addtitle>Plant J</addtitle><date>2023-05</date><risdate>2023</risdate><volume>114</volume><issue>4</issue><spage>836</spage><epage>854</epage><pages>836-854</pages><issn>0960-7412</issn><eissn>1365-313X</eissn><abstract>SUMMARY Arabidopsis histone deacetylase HDA19 is required for gene expression programs of a large spectrum of plant developmental and stress‐responsive pathways. How this enzyme senses cellular environment to control its activity remains unclear. In this work, we show that HDA19 is post‐translationally modified by S‐nitrosylation at 4 Cysteine (Cys) residues. HDA19 S‐nitrosylation depends on the cellular nitric oxide level, which is enhanced under oxidative stress. We find that HDA19 is required for cellular redox homeostasis and plant tolerance to oxidative stress, which in turn stimulates its nuclear enrichment, S‐nitrosylation and epigenetic functions including binding to genomic targets, histone deacetylation and gene repression. The Cys137 of the protein is involved in basal and stress‐induced S‐nitrosylation, and is required for HDA19 functions in developmental, stress‐responsive and epigenetic controls. Together, these results indicate that S‐nitrosylation regulates HDA19 activity and is a mechanism of redox‐sensing for chromatin regulation of plant tolerance to stress. Significance Statement The stress‐induced S‐nitrosylation regulates HDA19 activity to deacetylate H3K14 and to repress expression of subsets of genes under stress.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>36883867</pmid><doi>10.1111/tpj.16174</doi><tpages>854</tpages><orcidid>https://orcid.org/0000-0003-2639-3765</orcidid><orcidid>https://orcid.org/0000-0001-6884-0602</orcidid><orcidid>https://orcid.org/0000-0001-5238-5780</orcidid><orcidid>https://orcid.org/0000-0002-1540-0598</orcidid><orcidid>https://orcid.org/0000-0002-2091-1798</orcidid><orcidid>https://orcid.org/0000-0002-6144-4364</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0960-7412
ispartof The Plant journal : for cell and molecular biology, 2023-05, Vol.114 (4), p.836-854
issn 0960-7412
1365-313X
language eng
recordid cdi_hal_primary_oai_HAL_hal_04304589v2
source MEDLINE; IngentaConnect Open Access Journals; Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content; EZB-FREE-00999 freely available EZB journals
subjects Arabidopsis
Arabidopsis - metabolism
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Biochemistry
Biochemistry, Molecular Biology
Botanics
Chromatin
Chromatin - metabolism
Deacetylation
Epigenetics
Gene expression
HDA19
Histone deacetylase
Histone Deacetylases - genetics
Histone Deacetylases - metabolism
Histones
Homeostasis
Life Sciences
Nitric oxide
Nitric Oxide - metabolism
Oxidative stress
Plant stress
post‐translational modifications
S‐nitrosylation
Vegetal Biology
title S‐Nitrosylation of the histone deacetylase HDA19 stimulates its activity to enhance plant stress tolerance in Arabidopsis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T06%3A19%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=S%E2%80%90Nitrosylation%20of%20the%20histone%20deacetylase%20HDA19%20stimulates%20its%20activity%20to%20enhance%20plant%20stress%20tolerance%20in%20Arabidopsis&rft.jtitle=The%20Plant%20journal%20:%20for%20cell%20and%20molecular%20biology&rft.au=Zheng,%20Yu&rft.date=2023-05&rft.volume=114&rft.issue=4&rft.spage=836&rft.epage=854&rft.pages=836-854&rft.issn=0960-7412&rft.eissn=1365-313X&rft_id=info:doi/10.1111/tpj.16174&rft_dat=%3Cproquest_hal_p%3E2784837091%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2819162341&rft_id=info:pmid/36883867&rfr_iscdi=true