S‐Nitrosylation of the histone deacetylase HDA19 stimulates its activity to enhance plant stress tolerance in Arabidopsis
SUMMARY Arabidopsis histone deacetylase HDA19 is required for gene expression programs of a large spectrum of plant developmental and stress‐responsive pathways. How this enzyme senses cellular environment to control its activity remains unclear. In this work, we show that HDA19 is post‐translationa...
Gespeichert in:
Veröffentlicht in: | The Plant journal : for cell and molecular biology 2023-05, Vol.114 (4), p.836-854 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 854 |
---|---|
container_issue | 4 |
container_start_page | 836 |
container_title | The Plant journal : for cell and molecular biology |
container_volume | 114 |
creator | Zheng, Yu Li, Zhenting Cui, Xiaoyun Yang, Zheng Bao, Chun Pan, Lei Liu, Xiaoyun Chatel‐Innocenti, Gilles Vanacker, Hélène Noctor, Graham Dard, Avilien Reichheld, Jean‐Philippe Issakidis‐Bourguet, Emmanuelle Zhou, Dao‐Xiu |
description | SUMMARY
Arabidopsis histone deacetylase HDA19 is required for gene expression programs of a large spectrum of plant developmental and stress‐responsive pathways. How this enzyme senses cellular environment to control its activity remains unclear. In this work, we show that HDA19 is post‐translationally modified by S‐nitrosylation at 4 Cysteine (Cys) residues. HDA19 S‐nitrosylation depends on the cellular nitric oxide level, which is enhanced under oxidative stress. We find that HDA19 is required for cellular redox homeostasis and plant tolerance to oxidative stress, which in turn stimulates its nuclear enrichment, S‐nitrosylation and epigenetic functions including binding to genomic targets, histone deacetylation and gene repression. The Cys137 of the protein is involved in basal and stress‐induced S‐nitrosylation, and is required for HDA19 functions in developmental, stress‐responsive and epigenetic controls. Together, these results indicate that S‐nitrosylation regulates HDA19 activity and is a mechanism of redox‐sensing for chromatin regulation of plant tolerance to stress.
Significance Statement
The stress‐induced S‐nitrosylation regulates HDA19 activity to deacetylate H3K14 and to repress expression of subsets of genes under stress. |
doi_str_mv | 10.1111/tpj.16174 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04304589v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2784837091</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4224-4f2ca3dc725e530362efcd5e4c151a16f9440c9bf7f92d933e4d22bbff4750af3</originalsourceid><addsrcrecordid>eNp1kd9qFDEYxYModq1e-AIS8MZeTJt_k5lcLq11lUUFK3gXMpkvbJbZyZhkKos3PoLP6JOYdmsFwdwEzvfj5Ds5CD2n5JSWc5an7SmVtBEP0IJyWVec8i8P0YIoSapGUHaEnqS0JYQ2XIrH6IjLtuWtbBbo-6dfP36-9zmGtB9M9mHEweG8AbzxKYcRcA_GQi7DBHh1saQKp-x3c4EhYZ8TNjb7a5_3OAcM48aMFvA0mDEXMEJKRR8g3sp-xMtoOt-HKfn0FD1yZkjw7O4-Rp8vX1-dr6r1hzdvz5frygrGRCUcs4b3tmE11JxwycDZvgZhaU0NlU4JQazqXOMU6xXnIHrGus450dTEOH6MTg6-GzPoKfqdiXsdjNer5VrfaERwIupWXbPCvjqwUwxfZ0hZ73yyMJQ8EOakWdOKljdE0YK-_AfdhjmOJYlmLVVUMi7o38dt-eIUwd1vQIm-aU-X9vRte4V9cec4dzvo78k_dRXg7AB88wPs_--krz6-O1j-BrHCpVM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2819162341</pqid></control><display><type>article</type><title>S‐Nitrosylation of the histone deacetylase HDA19 stimulates its activity to enhance plant stress tolerance in Arabidopsis</title><source>MEDLINE</source><source>IngentaConnect Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Zheng, Yu ; Li, Zhenting ; Cui, Xiaoyun ; Yang, Zheng ; Bao, Chun ; Pan, Lei ; Liu, Xiaoyun ; Chatel‐Innocenti, Gilles ; Vanacker, Hélène ; Noctor, Graham ; Dard, Avilien ; Reichheld, Jean‐Philippe ; Issakidis‐Bourguet, Emmanuelle ; Zhou, Dao‐Xiu</creator><creatorcontrib>Zheng, Yu ; Li, Zhenting ; Cui, Xiaoyun ; Yang, Zheng ; Bao, Chun ; Pan, Lei ; Liu, Xiaoyun ; Chatel‐Innocenti, Gilles ; Vanacker, Hélène ; Noctor, Graham ; Dard, Avilien ; Reichheld, Jean‐Philippe ; Issakidis‐Bourguet, Emmanuelle ; Zhou, Dao‐Xiu</creatorcontrib><description>SUMMARY
Arabidopsis histone deacetylase HDA19 is required for gene expression programs of a large spectrum of plant developmental and stress‐responsive pathways. How this enzyme senses cellular environment to control its activity remains unclear. In this work, we show that HDA19 is post‐translationally modified by S‐nitrosylation at 4 Cysteine (Cys) residues. HDA19 S‐nitrosylation depends on the cellular nitric oxide level, which is enhanced under oxidative stress. We find that HDA19 is required for cellular redox homeostasis and plant tolerance to oxidative stress, which in turn stimulates its nuclear enrichment, S‐nitrosylation and epigenetic functions including binding to genomic targets, histone deacetylation and gene repression. The Cys137 of the protein is involved in basal and stress‐induced S‐nitrosylation, and is required for HDA19 functions in developmental, stress‐responsive and epigenetic controls. Together, these results indicate that S‐nitrosylation regulates HDA19 activity and is a mechanism of redox‐sensing for chromatin regulation of plant tolerance to stress.
Significance Statement
The stress‐induced S‐nitrosylation regulates HDA19 activity to deacetylate H3K14 and to repress expression of subsets of genes under stress.</description><identifier>ISSN: 0960-7412</identifier><identifier>EISSN: 1365-313X</identifier><identifier>DOI: 10.1111/tpj.16174</identifier><identifier>PMID: 36883867</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Arabidopsis ; Arabidopsis - metabolism ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Biochemistry ; Biochemistry, Molecular Biology ; Botanics ; Chromatin ; Chromatin - metabolism ; Deacetylation ; Epigenetics ; Gene expression ; HDA19 ; Histone deacetylase ; Histone Deacetylases - genetics ; Histone Deacetylases - metabolism ; Histones ; Homeostasis ; Life Sciences ; Nitric oxide ; Nitric Oxide - metabolism ; Oxidative stress ; Plant stress ; post‐translational modifications ; S‐nitrosylation ; Vegetal Biology</subject><ispartof>The Plant journal : for cell and molecular biology, 2023-05, Vol.114 (4), p.836-854</ispartof><rights>2023 Society for Experimental Biology and John Wiley & Sons Ltd.</rights><rights>Copyright © 2023 Society for Experimental Biology and John Wiley & Sons Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4224-4f2ca3dc725e530362efcd5e4c151a16f9440c9bf7f92d933e4d22bbff4750af3</citedby><cites>FETCH-LOGICAL-c4224-4f2ca3dc725e530362efcd5e4c151a16f9440c9bf7f92d933e4d22bbff4750af3</cites><orcidid>0000-0003-2639-3765 ; 0000-0001-6884-0602 ; 0000-0001-5238-5780 ; 0000-0002-1540-0598 ; 0000-0002-2091-1798 ; 0000-0002-6144-4364</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Ftpj.16174$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Ftpj.16174$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36883867$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04304589$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Zheng, Yu</creatorcontrib><creatorcontrib>Li, Zhenting</creatorcontrib><creatorcontrib>Cui, Xiaoyun</creatorcontrib><creatorcontrib>Yang, Zheng</creatorcontrib><creatorcontrib>Bao, Chun</creatorcontrib><creatorcontrib>Pan, Lei</creatorcontrib><creatorcontrib>Liu, Xiaoyun</creatorcontrib><creatorcontrib>Chatel‐Innocenti, Gilles</creatorcontrib><creatorcontrib>Vanacker, Hélène</creatorcontrib><creatorcontrib>Noctor, Graham</creatorcontrib><creatorcontrib>Dard, Avilien</creatorcontrib><creatorcontrib>Reichheld, Jean‐Philippe</creatorcontrib><creatorcontrib>Issakidis‐Bourguet, Emmanuelle</creatorcontrib><creatorcontrib>Zhou, Dao‐Xiu</creatorcontrib><title>S‐Nitrosylation of the histone deacetylase HDA19 stimulates its activity to enhance plant stress tolerance in Arabidopsis</title><title>The Plant journal : for cell and molecular biology</title><addtitle>Plant J</addtitle><description>SUMMARY
Arabidopsis histone deacetylase HDA19 is required for gene expression programs of a large spectrum of plant developmental and stress‐responsive pathways. How this enzyme senses cellular environment to control its activity remains unclear. In this work, we show that HDA19 is post‐translationally modified by S‐nitrosylation at 4 Cysteine (Cys) residues. HDA19 S‐nitrosylation depends on the cellular nitric oxide level, which is enhanced under oxidative stress. We find that HDA19 is required for cellular redox homeostasis and plant tolerance to oxidative stress, which in turn stimulates its nuclear enrichment, S‐nitrosylation and epigenetic functions including binding to genomic targets, histone deacetylation and gene repression. The Cys137 of the protein is involved in basal and stress‐induced S‐nitrosylation, and is required for HDA19 functions in developmental, stress‐responsive and epigenetic controls. Together, these results indicate that S‐nitrosylation regulates HDA19 activity and is a mechanism of redox‐sensing for chromatin regulation of plant tolerance to stress.
Significance Statement
The stress‐induced S‐nitrosylation regulates HDA19 activity to deacetylate H3K14 and to repress expression of subsets of genes under stress.</description><subject>Arabidopsis</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Biochemistry</subject><subject>Biochemistry, Molecular Biology</subject><subject>Botanics</subject><subject>Chromatin</subject><subject>Chromatin - metabolism</subject><subject>Deacetylation</subject><subject>Epigenetics</subject><subject>Gene expression</subject><subject>HDA19</subject><subject>Histone deacetylase</subject><subject>Histone Deacetylases - genetics</subject><subject>Histone Deacetylases - metabolism</subject><subject>Histones</subject><subject>Homeostasis</subject><subject>Life Sciences</subject><subject>Nitric oxide</subject><subject>Nitric Oxide - metabolism</subject><subject>Oxidative stress</subject><subject>Plant stress</subject><subject>post‐translational modifications</subject><subject>S‐nitrosylation</subject><subject>Vegetal Biology</subject><issn>0960-7412</issn><issn>1365-313X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kd9qFDEYxYModq1e-AIS8MZeTJt_k5lcLq11lUUFK3gXMpkvbJbZyZhkKos3PoLP6JOYdmsFwdwEzvfj5Ds5CD2n5JSWc5an7SmVtBEP0IJyWVec8i8P0YIoSapGUHaEnqS0JYQ2XIrH6IjLtuWtbBbo-6dfP36-9zmGtB9M9mHEweG8AbzxKYcRcA_GQi7DBHh1saQKp-x3c4EhYZ8TNjb7a5_3OAcM48aMFvA0mDEXMEJKRR8g3sp-xMtoOt-HKfn0FD1yZkjw7O4-Rp8vX1-dr6r1hzdvz5frygrGRCUcs4b3tmE11JxwycDZvgZhaU0NlU4JQazqXOMU6xXnIHrGus450dTEOH6MTg6-GzPoKfqdiXsdjNer5VrfaERwIupWXbPCvjqwUwxfZ0hZ73yyMJQ8EOakWdOKljdE0YK-_AfdhjmOJYlmLVVUMi7o38dt-eIUwd1vQIm-aU-X9vRte4V9cec4dzvo78k_dRXg7AB88wPs_--krz6-O1j-BrHCpVM</recordid><startdate>202305</startdate><enddate>202305</enddate><creator>Zheng, Yu</creator><creator>Li, Zhenting</creator><creator>Cui, Xiaoyun</creator><creator>Yang, Zheng</creator><creator>Bao, Chun</creator><creator>Pan, Lei</creator><creator>Liu, Xiaoyun</creator><creator>Chatel‐Innocenti, Gilles</creator><creator>Vanacker, Hélène</creator><creator>Noctor, Graham</creator><creator>Dard, Avilien</creator><creator>Reichheld, Jean‐Philippe</creator><creator>Issakidis‐Bourguet, Emmanuelle</creator><creator>Zhou, Dao‐Xiu</creator><general>Blackwell Publishing Ltd</general><general>Wiley</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-2639-3765</orcidid><orcidid>https://orcid.org/0000-0001-6884-0602</orcidid><orcidid>https://orcid.org/0000-0001-5238-5780</orcidid><orcidid>https://orcid.org/0000-0002-1540-0598</orcidid><orcidid>https://orcid.org/0000-0002-2091-1798</orcidid><orcidid>https://orcid.org/0000-0002-6144-4364</orcidid></search><sort><creationdate>202305</creationdate><title>S‐Nitrosylation of the histone deacetylase HDA19 stimulates its activity to enhance plant stress tolerance in Arabidopsis</title><author>Zheng, Yu ; Li, Zhenting ; Cui, Xiaoyun ; Yang, Zheng ; Bao, Chun ; Pan, Lei ; Liu, Xiaoyun ; Chatel‐Innocenti, Gilles ; Vanacker, Hélène ; Noctor, Graham ; Dard, Avilien ; Reichheld, Jean‐Philippe ; Issakidis‐Bourguet, Emmanuelle ; Zhou, Dao‐Xiu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4224-4f2ca3dc725e530362efcd5e4c151a16f9440c9bf7f92d933e4d22bbff4750af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Arabidopsis</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Biochemistry</topic><topic>Biochemistry, Molecular Biology</topic><topic>Botanics</topic><topic>Chromatin</topic><topic>Chromatin - metabolism</topic><topic>Deacetylation</topic><topic>Epigenetics</topic><topic>Gene expression</topic><topic>HDA19</topic><topic>Histone deacetylase</topic><topic>Histone Deacetylases - genetics</topic><topic>Histone Deacetylases - metabolism</topic><topic>Histones</topic><topic>Homeostasis</topic><topic>Life Sciences</topic><topic>Nitric oxide</topic><topic>Nitric Oxide - metabolism</topic><topic>Oxidative stress</topic><topic>Plant stress</topic><topic>post‐translational modifications</topic><topic>S‐nitrosylation</topic><topic>Vegetal Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Yu</creatorcontrib><creatorcontrib>Li, Zhenting</creatorcontrib><creatorcontrib>Cui, Xiaoyun</creatorcontrib><creatorcontrib>Yang, Zheng</creatorcontrib><creatorcontrib>Bao, Chun</creatorcontrib><creatorcontrib>Pan, Lei</creatorcontrib><creatorcontrib>Liu, Xiaoyun</creatorcontrib><creatorcontrib>Chatel‐Innocenti, Gilles</creatorcontrib><creatorcontrib>Vanacker, Hélène</creatorcontrib><creatorcontrib>Noctor, Graham</creatorcontrib><creatorcontrib>Dard, Avilien</creatorcontrib><creatorcontrib>Reichheld, Jean‐Philippe</creatorcontrib><creatorcontrib>Issakidis‐Bourguet, Emmanuelle</creatorcontrib><creatorcontrib>Zhou, Dao‐Xiu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>The Plant journal : for cell and molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Yu</au><au>Li, Zhenting</au><au>Cui, Xiaoyun</au><au>Yang, Zheng</au><au>Bao, Chun</au><au>Pan, Lei</au><au>Liu, Xiaoyun</au><au>Chatel‐Innocenti, Gilles</au><au>Vanacker, Hélène</au><au>Noctor, Graham</au><au>Dard, Avilien</au><au>Reichheld, Jean‐Philippe</au><au>Issakidis‐Bourguet, Emmanuelle</au><au>Zhou, Dao‐Xiu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>S‐Nitrosylation of the histone deacetylase HDA19 stimulates its activity to enhance plant stress tolerance in Arabidopsis</atitle><jtitle>The Plant journal : for cell and molecular biology</jtitle><addtitle>Plant J</addtitle><date>2023-05</date><risdate>2023</risdate><volume>114</volume><issue>4</issue><spage>836</spage><epage>854</epage><pages>836-854</pages><issn>0960-7412</issn><eissn>1365-313X</eissn><abstract>SUMMARY
Arabidopsis histone deacetylase HDA19 is required for gene expression programs of a large spectrum of plant developmental and stress‐responsive pathways. How this enzyme senses cellular environment to control its activity remains unclear. In this work, we show that HDA19 is post‐translationally modified by S‐nitrosylation at 4 Cysteine (Cys) residues. HDA19 S‐nitrosylation depends on the cellular nitric oxide level, which is enhanced under oxidative stress. We find that HDA19 is required for cellular redox homeostasis and plant tolerance to oxidative stress, which in turn stimulates its nuclear enrichment, S‐nitrosylation and epigenetic functions including binding to genomic targets, histone deacetylation and gene repression. The Cys137 of the protein is involved in basal and stress‐induced S‐nitrosylation, and is required for HDA19 functions in developmental, stress‐responsive and epigenetic controls. Together, these results indicate that S‐nitrosylation regulates HDA19 activity and is a mechanism of redox‐sensing for chromatin regulation of plant tolerance to stress.
Significance Statement
The stress‐induced S‐nitrosylation regulates HDA19 activity to deacetylate H3K14 and to repress expression of subsets of genes under stress.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>36883867</pmid><doi>10.1111/tpj.16174</doi><tpages>854</tpages><orcidid>https://orcid.org/0000-0003-2639-3765</orcidid><orcidid>https://orcid.org/0000-0001-6884-0602</orcidid><orcidid>https://orcid.org/0000-0001-5238-5780</orcidid><orcidid>https://orcid.org/0000-0002-1540-0598</orcidid><orcidid>https://orcid.org/0000-0002-2091-1798</orcidid><orcidid>https://orcid.org/0000-0002-6144-4364</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-7412 |
ispartof | The Plant journal : for cell and molecular biology, 2023-05, Vol.114 (4), p.836-854 |
issn | 0960-7412 1365-313X |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04304589v2 |
source | MEDLINE; IngentaConnect Open Access Journals; Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content; EZB-FREE-00999 freely available EZB journals |
subjects | Arabidopsis Arabidopsis - metabolism Arabidopsis Proteins - genetics Arabidopsis Proteins - metabolism Biochemistry Biochemistry, Molecular Biology Botanics Chromatin Chromatin - metabolism Deacetylation Epigenetics Gene expression HDA19 Histone deacetylase Histone Deacetylases - genetics Histone Deacetylases - metabolism Histones Homeostasis Life Sciences Nitric oxide Nitric Oxide - metabolism Oxidative stress Plant stress post‐translational modifications S‐nitrosylation Vegetal Biology |
title | S‐Nitrosylation of the histone deacetylase HDA19 stimulates its activity to enhance plant stress tolerance in Arabidopsis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T06%3A19%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=S%E2%80%90Nitrosylation%20of%20the%20histone%20deacetylase%20HDA19%20stimulates%20its%20activity%20to%20enhance%20plant%20stress%20tolerance%20in%20Arabidopsis&rft.jtitle=The%20Plant%20journal%20:%20for%20cell%20and%20molecular%20biology&rft.au=Zheng,%20Yu&rft.date=2023-05&rft.volume=114&rft.issue=4&rft.spage=836&rft.epage=854&rft.pages=836-854&rft.issn=0960-7412&rft.eissn=1365-313X&rft_id=info:doi/10.1111/tpj.16174&rft_dat=%3Cproquest_hal_p%3E2784837091%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2819162341&rft_id=info:pmid/36883867&rfr_iscdi=true |