Understanding political divisiveness using online participation data from the 2022 French and Brazilian presidential elections
Digital technologies can augment civic participation by facilitating the expression of detailed political preferences. Yet, digital participation efforts often rely on methods optimized for elections involving a few candidates. Here we present data collected in an online experiment where participant...
Gespeichert in:
Veröffentlicht in: | Nature human behaviour 2024, Vol.8 (1), p.137-148 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 148 |
---|---|
container_issue | 1 |
container_start_page | 137 |
container_title | Nature human behaviour |
container_volume | 8 |
creator | Navarrete, Carlos Macedo, Mariana Colley, Rachael Zhang, Jingling Ferrada, Nicole Mello, Maria Eduarda Lira, Rodrigo Bastos-Filho, Carmelo Grandi, Umberto Lang, Jérôme Hidalgo, César A. |
description | Digital technologies can augment civic participation by facilitating the expression of detailed political preferences. Yet, digital participation efforts often rely on methods optimized for elections involving a few candidates. Here we present data collected in an online experiment where participants built personalized government programmes by combining policies proposed by the candidates of the 2022 French and Brazilian presidential elections. We use this data to explore aggregates complementing those used in social choice theory, finding that a metric of divisiveness, which is uncorrelated with traditional aggregation functions, can identify polarizing proposals. These metrics provide a score for the divisiveness of each proposal that can be estimated in the absence of data on the demographic characteristics of participants and that explains the issues that divide a population. These findings suggest that divisiveness metrics can be useful complements to traditional aggregation functions in direct forms of digital participation.
A metric of political divisiveness helps identify polarizing proposals in the 2022 French and Brazilian presidential elections. |
doi_str_mv | 10.1038/s41562-023-01755-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04301837v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918404676</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324x-b30f021d218ba0de0602306281d1c6906e2016fc42157d3f3a634df0206b12ad3</originalsourceid><addsrcrecordid>eNp9kU9vFCEYxonR2Kb2C3gwJF70MPryZ2HmWBtrTTbxYs-EHd7p0rAwwsxm68HPLuvUajx4gvD-ngceHkJeMnjHQLTvi2QrxRvgogGmV6vm8IScctHpRggtn_61PyHnpdwBAOuE7LR6Tk6E7rRoeXtKftxEh7lMNjofb-mYgp98bwN1fu-L32PEUuhcjsMUg49IR5sr4kc7-RSps5OlQ047Om2RcuCcXmWM_ZZWS_oh2-8-eBvpmLF4h3Hy1RwD9kd1eUGeDTYUPH9Yz8jN1cevl9fN-sunz5cX66YXXB6ajYABOHOctRsLDkHV3KB4yxzrVQcKOTA19JKzlXZiEFYJ6aoE1IZx68QZebv4bm0wY_Y7m-9Nst5cX6zN8QykANYKvWeVfbOwY07fZiyT2fnSYwg2YpqL4W1XPxwYdBV9_Q96l-YcaxLDO9ZKkEqrSvGF6nMqJePw-AIG5limWco0NZT5VaY5VNGrB-t5s0P3KPldXQXEApQ6ireY_9z9H9ufe8mp-Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918404676</pqid></control><display><type>article</type><title>Understanding political divisiveness using online participation data from the 2022 French and Brazilian presidential elections</title><source>Nature</source><source>SpringerNature Journals</source><creator>Navarrete, Carlos ; Macedo, Mariana ; Colley, Rachael ; Zhang, Jingling ; Ferrada, Nicole ; Mello, Maria Eduarda ; Lira, Rodrigo ; Bastos-Filho, Carmelo ; Grandi, Umberto ; Lang, Jérôme ; Hidalgo, César A.</creator><creatorcontrib>Navarrete, Carlos ; Macedo, Mariana ; Colley, Rachael ; Zhang, Jingling ; Ferrada, Nicole ; Mello, Maria Eduarda ; Lira, Rodrigo ; Bastos-Filho, Carmelo ; Grandi, Umberto ; Lang, Jérôme ; Hidalgo, César A.</creatorcontrib><description>Digital technologies can augment civic participation by facilitating the expression of detailed political preferences. Yet, digital participation efforts often rely on methods optimized for elections involving a few candidates. Here we present data collected in an online experiment where participants built personalized government programmes by combining policies proposed by the candidates of the 2022 French and Brazilian presidential elections. We use this data to explore aggregates complementing those used in social choice theory, finding that a metric of divisiveness, which is uncorrelated with traditional aggregation functions, can identify polarizing proposals. These metrics provide a score for the divisiveness of each proposal that can be estimated in the absence of data on the demographic characteristics of participants and that explains the issues that divide a population. These findings suggest that divisiveness metrics can be useful complements to traditional aggregation functions in direct forms of digital participation.
A metric of political divisiveness helps identify polarizing proposals in the 2022 French and Brazilian presidential elections.</description><identifier>ISSN: 2397-3374</identifier><identifier>EISSN: 2397-3374</identifier><identifier>DOI: 10.1038/s41562-023-01755-x</identifier><identifier>PMID: 37973828</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>4014/2801 ; 4014/4012 ; Behavioral Sciences ; Biomedical and Life Sciences ; Candidates ; Computer Science ; Demography ; Experimental Psychology ; Life Sciences ; Microeconomics ; Neurosciences ; Participation ; Personality and Social Psychology ; Presidential elections ; Social choice</subject><ispartof>Nature human behaviour, 2024, Vol.8 (1), p.137-148</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. The Author(s), under exclusive licence to Springer Nature Limited.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324x-b30f021d218ba0de0602306281d1c6906e2016fc42157d3f3a634df0206b12ad3</citedby><cites>FETCH-LOGICAL-c324x-b30f021d218ba0de0602306281d1c6906e2016fc42157d3f3a634df0206b12ad3</cites><orcidid>0000-0003-1164-4234 ; 0000-0002-0924-5341 ; 0000-0002-8977-2159 ; 0000-0001-6089-6214 ; 0000-0002-6031-5982 ; 0000-0002-7071-379X ; 0000-0002-7715-6981 ; 0000-0002-1908-5142 ; 0009-0002-3988-6956 ; 0000-0002-6977-9492 ; 0000-0001-6789-9573</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41562-023-01755-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41562-023-01755-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37973828$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04301837$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Navarrete, Carlos</creatorcontrib><creatorcontrib>Macedo, Mariana</creatorcontrib><creatorcontrib>Colley, Rachael</creatorcontrib><creatorcontrib>Zhang, Jingling</creatorcontrib><creatorcontrib>Ferrada, Nicole</creatorcontrib><creatorcontrib>Mello, Maria Eduarda</creatorcontrib><creatorcontrib>Lira, Rodrigo</creatorcontrib><creatorcontrib>Bastos-Filho, Carmelo</creatorcontrib><creatorcontrib>Grandi, Umberto</creatorcontrib><creatorcontrib>Lang, Jérôme</creatorcontrib><creatorcontrib>Hidalgo, César A.</creatorcontrib><title>Understanding political divisiveness using online participation data from the 2022 French and Brazilian presidential elections</title><title>Nature human behaviour</title><addtitle>Nat Hum Behav</addtitle><addtitle>Nat Hum Behav</addtitle><description>Digital technologies can augment civic participation by facilitating the expression of detailed political preferences. Yet, digital participation efforts often rely on methods optimized for elections involving a few candidates. Here we present data collected in an online experiment where participants built personalized government programmes by combining policies proposed by the candidates of the 2022 French and Brazilian presidential elections. We use this data to explore aggregates complementing those used in social choice theory, finding that a metric of divisiveness, which is uncorrelated with traditional aggregation functions, can identify polarizing proposals. These metrics provide a score for the divisiveness of each proposal that can be estimated in the absence of data on the demographic characteristics of participants and that explains the issues that divide a population. These findings suggest that divisiveness metrics can be useful complements to traditional aggregation functions in direct forms of digital participation.
A metric of political divisiveness helps identify polarizing proposals in the 2022 French and Brazilian presidential elections.</description><subject>4014/2801</subject><subject>4014/4012</subject><subject>Behavioral Sciences</subject><subject>Biomedical and Life Sciences</subject><subject>Candidates</subject><subject>Computer Science</subject><subject>Demography</subject><subject>Experimental Psychology</subject><subject>Life Sciences</subject><subject>Microeconomics</subject><subject>Neurosciences</subject><subject>Participation</subject><subject>Personality and Social Psychology</subject><subject>Presidential elections</subject><subject>Social choice</subject><issn>2397-3374</issn><issn>2397-3374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kU9vFCEYxonR2Kb2C3gwJF70MPryZ2HmWBtrTTbxYs-EHd7p0rAwwsxm68HPLuvUajx4gvD-ngceHkJeMnjHQLTvi2QrxRvgogGmV6vm8IScctHpRggtn_61PyHnpdwBAOuE7LR6Tk6E7rRoeXtKftxEh7lMNjofb-mYgp98bwN1fu-L32PEUuhcjsMUg49IR5sr4kc7-RSps5OlQ047Om2RcuCcXmWM_ZZWS_oh2-8-eBvpmLF4h3Hy1RwD9kd1eUGeDTYUPH9Yz8jN1cevl9fN-sunz5cX66YXXB6ajYABOHOctRsLDkHV3KB4yxzrVQcKOTA19JKzlXZiEFYJ6aoE1IZx68QZebv4bm0wY_Y7m-9Nst5cX6zN8QykANYKvWeVfbOwY07fZiyT2fnSYwg2YpqL4W1XPxwYdBV9_Q96l-YcaxLDO9ZKkEqrSvGF6nMqJePw-AIG5limWco0NZT5VaY5VNGrB-t5s0P3KPldXQXEApQ6ireY_9z9H9ufe8mp-Q</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Navarrete, Carlos</creator><creator>Macedo, Mariana</creator><creator>Colley, Rachael</creator><creator>Zhang, Jingling</creator><creator>Ferrada, Nicole</creator><creator>Mello, Maria Eduarda</creator><creator>Lira, Rodrigo</creator><creator>Bastos-Filho, Carmelo</creator><creator>Grandi, Umberto</creator><creator>Lang, Jérôme</creator><creator>Hidalgo, César A.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Research [2017-....]</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-1164-4234</orcidid><orcidid>https://orcid.org/0000-0002-0924-5341</orcidid><orcidid>https://orcid.org/0000-0002-8977-2159</orcidid><orcidid>https://orcid.org/0000-0001-6089-6214</orcidid><orcidid>https://orcid.org/0000-0002-6031-5982</orcidid><orcidid>https://orcid.org/0000-0002-7071-379X</orcidid><orcidid>https://orcid.org/0000-0002-7715-6981</orcidid><orcidid>https://orcid.org/0000-0002-1908-5142</orcidid><orcidid>https://orcid.org/0009-0002-3988-6956</orcidid><orcidid>https://orcid.org/0000-0002-6977-9492</orcidid><orcidid>https://orcid.org/0000-0001-6789-9573</orcidid></search><sort><creationdate>2024</creationdate><title>Understanding political divisiveness using online participation data from the 2022 French and Brazilian presidential elections</title><author>Navarrete, Carlos ; Macedo, Mariana ; Colley, Rachael ; Zhang, Jingling ; Ferrada, Nicole ; Mello, Maria Eduarda ; Lira, Rodrigo ; Bastos-Filho, Carmelo ; Grandi, Umberto ; Lang, Jérôme ; Hidalgo, César A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324x-b30f021d218ba0de0602306281d1c6906e2016fc42157d3f3a634df0206b12ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>4014/2801</topic><topic>4014/4012</topic><topic>Behavioral Sciences</topic><topic>Biomedical and Life Sciences</topic><topic>Candidates</topic><topic>Computer Science</topic><topic>Demography</topic><topic>Experimental Psychology</topic><topic>Life Sciences</topic><topic>Microeconomics</topic><topic>Neurosciences</topic><topic>Participation</topic><topic>Personality and Social Psychology</topic><topic>Presidential elections</topic><topic>Social choice</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Navarrete, Carlos</creatorcontrib><creatorcontrib>Macedo, Mariana</creatorcontrib><creatorcontrib>Colley, Rachael</creatorcontrib><creatorcontrib>Zhang, Jingling</creatorcontrib><creatorcontrib>Ferrada, Nicole</creatorcontrib><creatorcontrib>Mello, Maria Eduarda</creatorcontrib><creatorcontrib>Lira, Rodrigo</creatorcontrib><creatorcontrib>Bastos-Filho, Carmelo</creatorcontrib><creatorcontrib>Grandi, Umberto</creatorcontrib><creatorcontrib>Lang, Jérôme</creatorcontrib><creatorcontrib>Hidalgo, César A.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Nature human behaviour</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Navarrete, Carlos</au><au>Macedo, Mariana</au><au>Colley, Rachael</au><au>Zhang, Jingling</au><au>Ferrada, Nicole</au><au>Mello, Maria Eduarda</au><au>Lira, Rodrigo</au><au>Bastos-Filho, Carmelo</au><au>Grandi, Umberto</au><au>Lang, Jérôme</au><au>Hidalgo, César A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding political divisiveness using online participation data from the 2022 French and Brazilian presidential elections</atitle><jtitle>Nature human behaviour</jtitle><stitle>Nat Hum Behav</stitle><addtitle>Nat Hum Behav</addtitle><date>2024</date><risdate>2024</risdate><volume>8</volume><issue>1</issue><spage>137</spage><epage>148</epage><pages>137-148</pages><issn>2397-3374</issn><eissn>2397-3374</eissn><abstract>Digital technologies can augment civic participation by facilitating the expression of detailed political preferences. Yet, digital participation efforts often rely on methods optimized for elections involving a few candidates. Here we present data collected in an online experiment where participants built personalized government programmes by combining policies proposed by the candidates of the 2022 French and Brazilian presidential elections. We use this data to explore aggregates complementing those used in social choice theory, finding that a metric of divisiveness, which is uncorrelated with traditional aggregation functions, can identify polarizing proposals. These metrics provide a score for the divisiveness of each proposal that can be estimated in the absence of data on the demographic characteristics of participants and that explains the issues that divide a population. These findings suggest that divisiveness metrics can be useful complements to traditional aggregation functions in direct forms of digital participation.
A metric of political divisiveness helps identify polarizing proposals in the 2022 French and Brazilian presidential elections.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>37973828</pmid><doi>10.1038/s41562-023-01755-x</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1164-4234</orcidid><orcidid>https://orcid.org/0000-0002-0924-5341</orcidid><orcidid>https://orcid.org/0000-0002-8977-2159</orcidid><orcidid>https://orcid.org/0000-0001-6089-6214</orcidid><orcidid>https://orcid.org/0000-0002-6031-5982</orcidid><orcidid>https://orcid.org/0000-0002-7071-379X</orcidid><orcidid>https://orcid.org/0000-0002-7715-6981</orcidid><orcidid>https://orcid.org/0000-0002-1908-5142</orcidid><orcidid>https://orcid.org/0009-0002-3988-6956</orcidid><orcidid>https://orcid.org/0000-0002-6977-9492</orcidid><orcidid>https://orcid.org/0000-0001-6789-9573</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2397-3374 |
ispartof | Nature human behaviour, 2024, Vol.8 (1), p.137-148 |
issn | 2397-3374 2397-3374 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04301837v1 |
source | Nature; SpringerNature Journals |
subjects | 4014/2801 4014/4012 Behavioral Sciences Biomedical and Life Sciences Candidates Computer Science Demography Experimental Psychology Life Sciences Microeconomics Neurosciences Participation Personality and Social Psychology Presidential elections Social choice |
title | Understanding political divisiveness using online participation data from the 2022 French and Brazilian presidential elections |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T20%3A13%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20political%20divisiveness%20using%20online%20participation%20data%20from%20the%202022%20French%20and%20Brazilian%20presidential%20elections&rft.jtitle=Nature%20human%20behaviour&rft.au=Navarrete,%20Carlos&rft.date=2024&rft.volume=8&rft.issue=1&rft.spage=137&rft.epage=148&rft.pages=137-148&rft.issn=2397-3374&rft.eissn=2397-3374&rft_id=info:doi/10.1038/s41562-023-01755-x&rft_dat=%3Cproquest_hal_p%3E2918404676%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918404676&rft_id=info:pmid/37973828&rfr_iscdi=true |