Massive Star Formation in the Tarantula Nebula
In this work, we present 299 candidate young stellar objects (YSOs) in 30 Doradus discovered using Spitzer and Herschel point-source catalogs, 276 of which are new. We study the parental giant molecular clouds in which these YSO candidates form using recently published Atacama Large Millimeter/submi...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2023-02, Vol.944 (1), p.26 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 26 |
container_title | The Astrophysical journal |
container_volume | 944 |
creator | Nayak, Omnarayani Green, Alex Hirschauer, Alec S. Indebetouw, Rémy Meixner, Margaret Wong, Tony Chevance, Mélanie De Marchi, Guido Lebouteiller, Vianney Lee, Min-Young Looney, Leslie W. Madden, Suzanne C. Roman-Duval, Julia Fukui, Yasuo Hacar, Alvaro Jameson, K. E. Kalari, Venu Oudshoorn, Luuk Rubio, Mónica Sabbi, Elena |
description | In this work, we present 299 candidate young stellar objects (YSOs) in 30 Doradus discovered using Spitzer and Herschel point-source catalogs, 276 of which are new. We study the parental giant molecular clouds in which these YSO candidates form using recently published Atacama Large Millimeter/submillimeter Array (ALMA) Cycle 7 observations of
12
CO and
13
CO. The threshold for star formation in 30 Doradus inferred by the LTE-based mass surface density is 178
M
⊙
pc
−2
, 40% higher than the threshold for star formation in the Milky Way. This increase in star formation threshold in comparison to the Milky Way and increase in line width seen in clumps 11 pc away in comparison to clumps 45 pc away from the R136 super star cluster could be due to injected turbulent energy, increase in interstellar medium pressure, and/or local magnetic field strength. Of the 299 YSO candidates in this work, 62% are not associated with
12
CO molecular gas. This large fraction can be explained by the fact that 75%–97% of the H
2
gas is not traced by CO. We fit a Kroupa initial mass function to the YSO candidates and find that the total integrated stellar mass is 18,000
M
⊙
and that the region has a star formation rate (SFR) of 0.18
M
⊙
yr
−1
. The initial mass function determined here applies to the four 150″ × 150″ (37.5 pc × 37.5 pc) subfields and one 150″ × 75″ (37.5 pc × 18.8 pc) subfield observed with ALMA. The SFR in 30 Doradus has increased in the past few million years. |
doi_str_mv | 10.3847/1538-4357/acac8b |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04301596v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_084427d06f254242b12d1fbd73c1e275</doaj_id><sourcerecordid>2774964514</sourcerecordid><originalsourceid>FETCH-LOGICAL-c450t-36d38608f6a78a7cdbb09f3aa5cf31224bd2c7d41dc2ee05ad3b362c21c2abd13</originalsourceid><addsrcrecordid>eNp1kc1Lw0AQxRdRsFbvHgOeBNPuZzY5lmJtoerBCt6W2Y_YlDRbN2nB_97ESMWDp2Eeb37DzEPomuARS7kcE8HSmDMhx2DApPoEDY7SKRpgjHmcMPl2ji7qetO1NMsGaPQIdV0cXPTSQIhmPmyhKXwVFVXUrF20ggBVsy8henK6LZfoLIeydlc_dYheZ_er6TxePj8sppNlbLjATcwSy9IEp3kCMgVprNY4yxmAMDkjlHJtqZGWE2uoc1iAZZol1FBiKGhL2BAteq71sFG7UGwhfCoPhfoWfHhXEJrClE7hlHMqLU5yKjjlVBNqSa6tZIY4KkXLuu1Zayj_oOaTpeo0zBkmIksO3d6b3rsL_mPv6kZt_D5U7amKSsmzhAvCWxfuXSb4ug4uP2IJVl0aqnu96l6v-jTakbt-pPC7X-a_9i-dSYkZ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2774964514</pqid></control><display><type>article</type><title>Massive Star Formation in the Tarantula Nebula</title><source>DOAJ Directory of Open Access Journals</source><source>Institute of Physics Open Access Journal Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Nayak, Omnarayani ; Green, Alex ; Hirschauer, Alec S. ; Indebetouw, Rémy ; Meixner, Margaret ; Wong, Tony ; Chevance, Mélanie ; De Marchi, Guido ; Lebouteiller, Vianney ; Lee, Min-Young ; Looney, Leslie W. ; Madden, Suzanne C. ; Roman-Duval, Julia ; Fukui, Yasuo ; Hacar, Alvaro ; Jameson, K. E. ; Kalari, Venu ; Oudshoorn, Luuk ; Rubio, Mónica ; Sabbi, Elena</creator><creatorcontrib>Nayak, Omnarayani ; Green, Alex ; Hirschauer, Alec S. ; Indebetouw, Rémy ; Meixner, Margaret ; Wong, Tony ; Chevance, Mélanie ; De Marchi, Guido ; Lebouteiller, Vianney ; Lee, Min-Young ; Looney, Leslie W. ; Madden, Suzanne C. ; Roman-Duval, Julia ; Fukui, Yasuo ; Hacar, Alvaro ; Jameson, K. E. ; Kalari, Venu ; Oudshoorn, Luuk ; Rubio, Mónica ; Sabbi, Elena</creatorcontrib><description>In this work, we present 299 candidate young stellar objects (YSOs) in 30 Doradus discovered using Spitzer and Herschel point-source catalogs, 276 of which are new. We study the parental giant molecular clouds in which these YSO candidates form using recently published Atacama Large Millimeter/submillimeter Array (ALMA) Cycle 7 observations of
12
CO and
13
CO. The threshold for star formation in 30 Doradus inferred by the LTE-based mass surface density is 178
M
⊙
pc
−2
, 40% higher than the threshold for star formation in the Milky Way. This increase in star formation threshold in comparison to the Milky Way and increase in line width seen in clumps 11 pc away in comparison to clumps 45 pc away from the R136 super star cluster could be due to injected turbulent energy, increase in interstellar medium pressure, and/or local magnetic field strength. Of the 299 YSO candidates in this work, 62% are not associated with
12
CO molecular gas. This large fraction can be explained by the fact that 75%–97% of the H
2
gas is not traced by CO. We fit a Kroupa initial mass function to the YSO candidates and find that the total integrated stellar mass is 18,000
M
⊙
and that the region has a star formation rate (SFR) of 0.18
M
⊙
yr
−1
. The initial mass function determined here applies to the four 150″ × 150″ (37.5 pc × 37.5 pc) subfields and one 150″ × 75″ (37.5 pc × 18.8 pc) subfield observed with ALMA. The SFR in 30 Doradus has increased in the past few million years.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/acac8b</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Astrophysics ; Candidates ; Clumps ; Cosmology and Extra-Galactic Astrophysics ; Field strength ; Initial mass function ; Interstellar matter ; Interstellar medium ; Magnetic fields ; Massive stars ; Milky Way ; Molecular clouds ; Molecular gases ; Nebulae ; Physics ; Radio telescopes ; Star & galaxy formation ; Star clusters ; Star formation ; Star formation rate ; Stars & galaxies ; Stellar mass ; Turbulent energy ; Young stellar objects</subject><ispartof>The Astrophysical journal, 2023-02, Vol.944 (1), p.26</ispartof><rights>2023. The Author(s). Published by the American Astronomical Society.</rights><rights>2023. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c450t-36d38608f6a78a7cdbb09f3aa5cf31224bd2c7d41dc2ee05ad3b362c21c2abd13</citedby><cites>FETCH-LOGICAL-c450t-36d38608f6a78a7cdbb09f3aa5cf31224bd2c7d41dc2ee05ad3b362c21c2abd13</cites><orcidid>0000-0003-3229-2899 ; 0000-0002-7759-0585 ; 0000-0002-2954-8622 ; 0000-0001-7105-0994 ; 0000-0002-8432-3362 ; 0000-0002-4540-6587 ; 0000-0002-5307-5941 ; 0000-0003-2954-7643 ; 0000-0002-4663-6827 ; 0000-0002-7716-6223 ; 0000-0001-6326-7069 ; 0000-0001-7906-3829 ; 0000-0002-4641-2532 ; 0000-0001-6576-6339 ; 0000-0002-5635-5180 ; 0000-0001-5397-6961 ; 0000-0002-9888-0784 ; 0000-0002-8966-9856</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/acac8b/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>230,314,780,784,864,885,2102,27924,27925,38890,53867</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04301596$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Nayak, Omnarayani</creatorcontrib><creatorcontrib>Green, Alex</creatorcontrib><creatorcontrib>Hirschauer, Alec S.</creatorcontrib><creatorcontrib>Indebetouw, Rémy</creatorcontrib><creatorcontrib>Meixner, Margaret</creatorcontrib><creatorcontrib>Wong, Tony</creatorcontrib><creatorcontrib>Chevance, Mélanie</creatorcontrib><creatorcontrib>De Marchi, Guido</creatorcontrib><creatorcontrib>Lebouteiller, Vianney</creatorcontrib><creatorcontrib>Lee, Min-Young</creatorcontrib><creatorcontrib>Looney, Leslie W.</creatorcontrib><creatorcontrib>Madden, Suzanne C.</creatorcontrib><creatorcontrib>Roman-Duval, Julia</creatorcontrib><creatorcontrib>Fukui, Yasuo</creatorcontrib><creatorcontrib>Hacar, Alvaro</creatorcontrib><creatorcontrib>Jameson, K. E.</creatorcontrib><creatorcontrib>Kalari, Venu</creatorcontrib><creatorcontrib>Oudshoorn, Luuk</creatorcontrib><creatorcontrib>Rubio, Mónica</creatorcontrib><creatorcontrib>Sabbi, Elena</creatorcontrib><title>Massive Star Formation in the Tarantula Nebula</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>In this work, we present 299 candidate young stellar objects (YSOs) in 30 Doradus discovered using Spitzer and Herschel point-source catalogs, 276 of which are new. We study the parental giant molecular clouds in which these YSO candidates form using recently published Atacama Large Millimeter/submillimeter Array (ALMA) Cycle 7 observations of
12
CO and
13
CO. The threshold for star formation in 30 Doradus inferred by the LTE-based mass surface density is 178
M
⊙
pc
−2
, 40% higher than the threshold for star formation in the Milky Way. This increase in star formation threshold in comparison to the Milky Way and increase in line width seen in clumps 11 pc away in comparison to clumps 45 pc away from the R136 super star cluster could be due to injected turbulent energy, increase in interstellar medium pressure, and/or local magnetic field strength. Of the 299 YSO candidates in this work, 62% are not associated with
12
CO molecular gas. This large fraction can be explained by the fact that 75%–97% of the H
2
gas is not traced by CO. We fit a Kroupa initial mass function to the YSO candidates and find that the total integrated stellar mass is 18,000
M
⊙
and that the region has a star formation rate (SFR) of 0.18
M
⊙
yr
−1
. The initial mass function determined here applies to the four 150″ × 150″ (37.5 pc × 37.5 pc) subfields and one 150″ × 75″ (37.5 pc × 18.8 pc) subfield observed with ALMA. The SFR in 30 Doradus has increased in the past few million years.</description><subject>Astrophysics</subject><subject>Candidates</subject><subject>Clumps</subject><subject>Cosmology and Extra-Galactic Astrophysics</subject><subject>Field strength</subject><subject>Initial mass function</subject><subject>Interstellar matter</subject><subject>Interstellar medium</subject><subject>Magnetic fields</subject><subject>Massive stars</subject><subject>Milky Way</subject><subject>Molecular clouds</subject><subject>Molecular gases</subject><subject>Nebulae</subject><subject>Physics</subject><subject>Radio telescopes</subject><subject>Star & galaxy formation</subject><subject>Star clusters</subject><subject>Star formation</subject><subject>Star formation rate</subject><subject>Stars & galaxies</subject><subject>Stellar mass</subject><subject>Turbulent energy</subject><subject>Young stellar objects</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>DOA</sourceid><recordid>eNp1kc1Lw0AQxRdRsFbvHgOeBNPuZzY5lmJtoerBCt6W2Y_YlDRbN2nB_97ESMWDp2Eeb37DzEPomuARS7kcE8HSmDMhx2DApPoEDY7SKRpgjHmcMPl2ji7qetO1NMsGaPQIdV0cXPTSQIhmPmyhKXwVFVXUrF20ggBVsy8henK6LZfoLIeydlc_dYheZ_er6TxePj8sppNlbLjATcwSy9IEp3kCMgVprNY4yxmAMDkjlHJtqZGWE2uoc1iAZZol1FBiKGhL2BAteq71sFG7UGwhfCoPhfoWfHhXEJrClE7hlHMqLU5yKjjlVBNqSa6tZIY4KkXLuu1Zayj_oOaTpeo0zBkmIksO3d6b3rsL_mPv6kZt_D5U7amKSsmzhAvCWxfuXSb4ug4uP2IJVl0aqnu96l6v-jTakbt-pPC7X-a_9i-dSYkZ</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Nayak, Omnarayani</creator><creator>Green, Alex</creator><creator>Hirschauer, Alec S.</creator><creator>Indebetouw, Rémy</creator><creator>Meixner, Margaret</creator><creator>Wong, Tony</creator><creator>Chevance, Mélanie</creator><creator>De Marchi, Guido</creator><creator>Lebouteiller, Vianney</creator><creator>Lee, Min-Young</creator><creator>Looney, Leslie W.</creator><creator>Madden, Suzanne C.</creator><creator>Roman-Duval, Julia</creator><creator>Fukui, Yasuo</creator><creator>Hacar, Alvaro</creator><creator>Jameson, K. E.</creator><creator>Kalari, Venu</creator><creator>Oudshoorn, Luuk</creator><creator>Rubio, Mónica</creator><creator>Sabbi, Elena</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><general>American Astronomical Society</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3229-2899</orcidid><orcidid>https://orcid.org/0000-0002-7759-0585</orcidid><orcidid>https://orcid.org/0000-0002-2954-8622</orcidid><orcidid>https://orcid.org/0000-0001-7105-0994</orcidid><orcidid>https://orcid.org/0000-0002-8432-3362</orcidid><orcidid>https://orcid.org/0000-0002-4540-6587</orcidid><orcidid>https://orcid.org/0000-0002-5307-5941</orcidid><orcidid>https://orcid.org/0000-0003-2954-7643</orcidid><orcidid>https://orcid.org/0000-0002-4663-6827</orcidid><orcidid>https://orcid.org/0000-0002-7716-6223</orcidid><orcidid>https://orcid.org/0000-0001-6326-7069</orcidid><orcidid>https://orcid.org/0000-0001-7906-3829</orcidid><orcidid>https://orcid.org/0000-0002-4641-2532</orcidid><orcidid>https://orcid.org/0000-0001-6576-6339</orcidid><orcidid>https://orcid.org/0000-0002-5635-5180</orcidid><orcidid>https://orcid.org/0000-0001-5397-6961</orcidid><orcidid>https://orcid.org/0000-0002-9888-0784</orcidid><orcidid>https://orcid.org/0000-0002-8966-9856</orcidid></search><sort><creationdate>20230201</creationdate><title>Massive Star Formation in the Tarantula Nebula</title><author>Nayak, Omnarayani ; Green, Alex ; Hirschauer, Alec S. ; Indebetouw, Rémy ; Meixner, Margaret ; Wong, Tony ; Chevance, Mélanie ; De Marchi, Guido ; Lebouteiller, Vianney ; Lee, Min-Young ; Looney, Leslie W. ; Madden, Suzanne C. ; Roman-Duval, Julia ; Fukui, Yasuo ; Hacar, Alvaro ; Jameson, K. E. ; Kalari, Venu ; Oudshoorn, Luuk ; Rubio, Mónica ; Sabbi, Elena</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c450t-36d38608f6a78a7cdbb09f3aa5cf31224bd2c7d41dc2ee05ad3b362c21c2abd13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Astrophysics</topic><topic>Candidates</topic><topic>Clumps</topic><topic>Cosmology and Extra-Galactic Astrophysics</topic><topic>Field strength</topic><topic>Initial mass function</topic><topic>Interstellar matter</topic><topic>Interstellar medium</topic><topic>Magnetic fields</topic><topic>Massive stars</topic><topic>Milky Way</topic><topic>Molecular clouds</topic><topic>Molecular gases</topic><topic>Nebulae</topic><topic>Physics</topic><topic>Radio telescopes</topic><topic>Star & galaxy formation</topic><topic>Star clusters</topic><topic>Star formation</topic><topic>Star formation rate</topic><topic>Stars & galaxies</topic><topic>Stellar mass</topic><topic>Turbulent energy</topic><topic>Young stellar objects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nayak, Omnarayani</creatorcontrib><creatorcontrib>Green, Alex</creatorcontrib><creatorcontrib>Hirschauer, Alec S.</creatorcontrib><creatorcontrib>Indebetouw, Rémy</creatorcontrib><creatorcontrib>Meixner, Margaret</creatorcontrib><creatorcontrib>Wong, Tony</creatorcontrib><creatorcontrib>Chevance, Mélanie</creatorcontrib><creatorcontrib>De Marchi, Guido</creatorcontrib><creatorcontrib>Lebouteiller, Vianney</creatorcontrib><creatorcontrib>Lee, Min-Young</creatorcontrib><creatorcontrib>Looney, Leslie W.</creatorcontrib><creatorcontrib>Madden, Suzanne C.</creatorcontrib><creatorcontrib>Roman-Duval, Julia</creatorcontrib><creatorcontrib>Fukui, Yasuo</creatorcontrib><creatorcontrib>Hacar, Alvaro</creatorcontrib><creatorcontrib>Jameson, K. E.</creatorcontrib><creatorcontrib>Kalari, Venu</creatorcontrib><creatorcontrib>Oudshoorn, Luuk</creatorcontrib><creatorcontrib>Rubio, Mónica</creatorcontrib><creatorcontrib>Sabbi, Elena</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nayak, Omnarayani</au><au>Green, Alex</au><au>Hirschauer, Alec S.</au><au>Indebetouw, Rémy</au><au>Meixner, Margaret</au><au>Wong, Tony</au><au>Chevance, Mélanie</au><au>De Marchi, Guido</au><au>Lebouteiller, Vianney</au><au>Lee, Min-Young</au><au>Looney, Leslie W.</au><au>Madden, Suzanne C.</au><au>Roman-Duval, Julia</au><au>Fukui, Yasuo</au><au>Hacar, Alvaro</au><au>Jameson, K. E.</au><au>Kalari, Venu</au><au>Oudshoorn, Luuk</au><au>Rubio, Mónica</au><au>Sabbi, Elena</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Massive Star Formation in the Tarantula Nebula</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2023-02-01</date><risdate>2023</risdate><volume>944</volume><issue>1</issue><spage>26</spage><pages>26-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>In this work, we present 299 candidate young stellar objects (YSOs) in 30 Doradus discovered using Spitzer and Herschel point-source catalogs, 276 of which are new. We study the parental giant molecular clouds in which these YSO candidates form using recently published Atacama Large Millimeter/submillimeter Array (ALMA) Cycle 7 observations of
12
CO and
13
CO. The threshold for star formation in 30 Doradus inferred by the LTE-based mass surface density is 178
M
⊙
pc
−2
, 40% higher than the threshold for star formation in the Milky Way. This increase in star formation threshold in comparison to the Milky Way and increase in line width seen in clumps 11 pc away in comparison to clumps 45 pc away from the R136 super star cluster could be due to injected turbulent energy, increase in interstellar medium pressure, and/or local magnetic field strength. Of the 299 YSO candidates in this work, 62% are not associated with
12
CO molecular gas. This large fraction can be explained by the fact that 75%–97% of the H
2
gas is not traced by CO. We fit a Kroupa initial mass function to the YSO candidates and find that the total integrated stellar mass is 18,000
M
⊙
and that the region has a star formation rate (SFR) of 0.18
M
⊙
yr
−1
. The initial mass function determined here applies to the four 150″ × 150″ (37.5 pc × 37.5 pc) subfields and one 150″ × 75″ (37.5 pc × 18.8 pc) subfield observed with ALMA. The SFR in 30 Doradus has increased in the past few million years.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/acac8b</doi><orcidid>https://orcid.org/0000-0003-3229-2899</orcidid><orcidid>https://orcid.org/0000-0002-7759-0585</orcidid><orcidid>https://orcid.org/0000-0002-2954-8622</orcidid><orcidid>https://orcid.org/0000-0001-7105-0994</orcidid><orcidid>https://orcid.org/0000-0002-8432-3362</orcidid><orcidid>https://orcid.org/0000-0002-4540-6587</orcidid><orcidid>https://orcid.org/0000-0002-5307-5941</orcidid><orcidid>https://orcid.org/0000-0003-2954-7643</orcidid><orcidid>https://orcid.org/0000-0002-4663-6827</orcidid><orcidid>https://orcid.org/0000-0002-7716-6223</orcidid><orcidid>https://orcid.org/0000-0001-6326-7069</orcidid><orcidid>https://orcid.org/0000-0001-7906-3829</orcidid><orcidid>https://orcid.org/0000-0002-4641-2532</orcidid><orcidid>https://orcid.org/0000-0001-6576-6339</orcidid><orcidid>https://orcid.org/0000-0002-5635-5180</orcidid><orcidid>https://orcid.org/0000-0001-5397-6961</orcidid><orcidid>https://orcid.org/0000-0002-9888-0784</orcidid><orcidid>https://orcid.org/0000-0002-8966-9856</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2023-02, Vol.944 (1), p.26 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04301596v1 |
source | DOAJ Directory of Open Access Journals; Institute of Physics Open Access Journal Titles; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Astrophysics Candidates Clumps Cosmology and Extra-Galactic Astrophysics Field strength Initial mass function Interstellar matter Interstellar medium Magnetic fields Massive stars Milky Way Molecular clouds Molecular gases Nebulae Physics Radio telescopes Star & galaxy formation Star clusters Star formation Star formation rate Stars & galaxies Stellar mass Turbulent energy Young stellar objects |
title | Massive Star Formation in the Tarantula Nebula |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T08%3A01%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Massive%20Star%20Formation%20in%20the%20Tarantula%20Nebula&rft.jtitle=The%20Astrophysical%20journal&rft.au=Nayak,%20Omnarayani&rft.date=2023-02-01&rft.volume=944&rft.issue=1&rft.spage=26&rft.pages=26-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/acac8b&rft_dat=%3Cproquest_hal_p%3E2774964514%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2774964514&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_084427d06f254242b12d1fbd73c1e275&rfr_iscdi=true |