Optimization of magnetic nanoparticles for engineering erythrocytes as theranostic agents

The application of superparamagnetic iron oxide nanoparticles (SPIONs) in drug delivery, magnetic resonance imaging, cell tracking, and hyperthermia has been long exploited regarding their inducible magnetic properties. Nevertheless, SPIONs remain rapidly cleared from the circulation by the reticulo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials science 2023-05, Vol.11 (9), p.3252-3268
Hauptverfasser: Slavu, Laura Maria, Antonelli, Antonella, Scarpa, Emanuele Salvatore, Abdalla, Pasant, Wilhelm, Claire, Silvestri, Niccolò, Pellegrino, Teresa, Scheffler, Konrad, Magnani, Mauro, Rinaldi, Rosaria, Di Corato, Riccardo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3268
container_issue 9
container_start_page 3252
container_title Biomaterials science
container_volume 11
creator Slavu, Laura Maria
Antonelli, Antonella
Scarpa, Emanuele Salvatore
Abdalla, Pasant
Wilhelm, Claire
Silvestri, Niccolò
Pellegrino, Teresa
Scheffler, Konrad
Magnani, Mauro
Rinaldi, Rosaria
Di Corato, Riccardo
description The application of superparamagnetic iron oxide nanoparticles (SPIONs) in drug delivery, magnetic resonance imaging, cell tracking, and hyperthermia has been long exploited regarding their inducible magnetic properties. Nevertheless, SPIONs remain rapidly cleared from the circulation by the reticuloendothelial system (RES) or mononuclear phagocyte system, with uptake dependent on several factors such as the hydrodynamic diameter, electrical charge and surface coating. This rapid clearance of SPION-based theranostic agents from circulation is one of the main challenges hampering the medical applications that differ from RES targeting. This work proposes a strategy to render biocompatible SPIONs through their encapsulation in the red blood cells (RBCs). In this work, the research has been focused on the multi-step optimization of chemical synthesis of magnetic nanoparticles (MNPs), precisely iron oxide nanoparticles (IONPs) and zinc manganese-ferrite nanoparticles (Zn/Mn FNPs), for encapsulation in human and murine RBCs. The encapsulation through the transient opening of RBC membrane pores requires extensive efforts to deliver high-quality nanoparticles in terms of chemical properties, morphology, stability and biocompatibility. After reaching this goal, in vitro experiments were performed with selected nanomaterials to investigate the potential of engineered MNP-RBC constructs in theranostic approaches. The synthesis of magnetic nanoparticles (based on iron oxide or Zn/Mn ferrite) has been optimized, through the evaluation of different parameters, for encapsulation into human and murine red blood cells.
doi_str_mv 10.1039/d3bm00264k
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04299158v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2788796898</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-29b2c5b108f9c7409f372e5d56c5a7297e8afb927a59f2e8e53becb502dcb2a63</originalsourceid><addsrcrecordid>eNpdkU1PGzEQhq2KqkQ0l96LVuJSKgX8sbu2jyG0BRGUSzlwsrzObOKwawfbqZT-epyGBom5zGjmmVczehH6QvAFwUxezlnTY0zr8ukDGlBc8lEpSnl0qBk-RsMYVzgH5xLX5BM6ZrVkknA6QI-zdbK9_auT9a7wbdHrhYNkTeG082sdctlBLFofCnAL6wCCdYsCwjYtgzfblIc6FmkJIS_E3aZegEvxM_rY6i7C8DWfoIefP35PbkbT2a_byXg6MiXmaURlQ03VECxaaXiJZcs4hWpe1abSnEoOQreNpFxXsqUgoGINmKbCdG4aqmt2gs73ukvdqXWwvQ5b5bVVN-Op2vVwSaUklfhDMvttz66Df95ATKq30UDXaQd-ExXlQnBZCykyevYOXflNcPkTRQUWRNSk3gl-31Mm-BgDtIcLCFY7f9Q1u7r_589dhk9fJTdND_MD-t-NDHzdAyGaw_TNYPYC2ueUoA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2808186161</pqid></control><display><type>article</type><title>Optimization of magnetic nanoparticles for engineering erythrocytes as theranostic agents</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><creator>Slavu, Laura Maria ; Antonelli, Antonella ; Scarpa, Emanuele Salvatore ; Abdalla, Pasant ; Wilhelm, Claire ; Silvestri, Niccolò ; Pellegrino, Teresa ; Scheffler, Konrad ; Magnani, Mauro ; Rinaldi, Rosaria ; Di Corato, Riccardo</creator><creatorcontrib>Slavu, Laura Maria ; Antonelli, Antonella ; Scarpa, Emanuele Salvatore ; Abdalla, Pasant ; Wilhelm, Claire ; Silvestri, Niccolò ; Pellegrino, Teresa ; Scheffler, Konrad ; Magnani, Mauro ; Rinaldi, Rosaria ; Di Corato, Riccardo</creatorcontrib><description>The application of superparamagnetic iron oxide nanoparticles (SPIONs) in drug delivery, magnetic resonance imaging, cell tracking, and hyperthermia has been long exploited regarding their inducible magnetic properties. Nevertheless, SPIONs remain rapidly cleared from the circulation by the reticuloendothelial system (RES) or mononuclear phagocyte system, with uptake dependent on several factors such as the hydrodynamic diameter, electrical charge and surface coating. This rapid clearance of SPION-based theranostic agents from circulation is one of the main challenges hampering the medical applications that differ from RES targeting. This work proposes a strategy to render biocompatible SPIONs through their encapsulation in the red blood cells (RBCs). In this work, the research has been focused on the multi-step optimization of chemical synthesis of magnetic nanoparticles (MNPs), precisely iron oxide nanoparticles (IONPs) and zinc manganese-ferrite nanoparticles (Zn/Mn FNPs), for encapsulation in human and murine RBCs. The encapsulation through the transient opening of RBC membrane pores requires extensive efforts to deliver high-quality nanoparticles in terms of chemical properties, morphology, stability and biocompatibility. After reaching this goal, in vitro experiments were performed with selected nanomaterials to investigate the potential of engineered MNP-RBC constructs in theranostic approaches. The synthesis of magnetic nanoparticles (based on iron oxide or Zn/Mn ferrite) has been optimized, through the evaluation of different parameters, for encapsulation into human and murine red blood cells.</description><identifier>ISSN: 2047-4830</identifier><identifier>EISSN: 2047-4849</identifier><identifier>DOI: 10.1039/d3bm00264k</identifier><identifier>PMID: 36939172</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Animals ; Biocompatibility ; Chemical properties ; Chemical Sciences ; Chemical synthesis ; Drug Delivery Systems ; Encapsulation ; Erythrocytes ; Erythrocytes - metabolism ; Humans ; Hyperthermia ; Iron oxides ; Magnetic properties ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Magnetite Nanoparticles - chemistry ; Manganese ; Mice ; Nanomaterials ; Nanoparticles ; Optimization ; Precision Medicine ; Theranostic Nanomedicine - methods</subject><ispartof>Biomaterials science, 2023-05, Vol.11 (9), p.3252-3268</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-29b2c5b108f9c7409f372e5d56c5a7297e8afb927a59f2e8e53becb502dcb2a63</citedby><cites>FETCH-LOGICAL-c407t-29b2c5b108f9c7409f372e5d56c5a7297e8afb927a59f2e8e53becb502dcb2a63</cites><orcidid>0000-0002-5931-4616 ; 0000-0003-0202-8173 ; 0000-0002-7173-6176 ; 0000-0001-5518-1134 ; 0000-0002-6842-9204 ; 0000-0001-7024-9627</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36939172$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04299158$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Slavu, Laura Maria</creatorcontrib><creatorcontrib>Antonelli, Antonella</creatorcontrib><creatorcontrib>Scarpa, Emanuele Salvatore</creatorcontrib><creatorcontrib>Abdalla, Pasant</creatorcontrib><creatorcontrib>Wilhelm, Claire</creatorcontrib><creatorcontrib>Silvestri, Niccolò</creatorcontrib><creatorcontrib>Pellegrino, Teresa</creatorcontrib><creatorcontrib>Scheffler, Konrad</creatorcontrib><creatorcontrib>Magnani, Mauro</creatorcontrib><creatorcontrib>Rinaldi, Rosaria</creatorcontrib><creatorcontrib>Di Corato, Riccardo</creatorcontrib><title>Optimization of magnetic nanoparticles for engineering erythrocytes as theranostic agents</title><title>Biomaterials science</title><addtitle>Biomater Sci</addtitle><description>The application of superparamagnetic iron oxide nanoparticles (SPIONs) in drug delivery, magnetic resonance imaging, cell tracking, and hyperthermia has been long exploited regarding their inducible magnetic properties. Nevertheless, SPIONs remain rapidly cleared from the circulation by the reticuloendothelial system (RES) or mononuclear phagocyte system, with uptake dependent on several factors such as the hydrodynamic diameter, electrical charge and surface coating. This rapid clearance of SPION-based theranostic agents from circulation is one of the main challenges hampering the medical applications that differ from RES targeting. This work proposes a strategy to render biocompatible SPIONs through their encapsulation in the red blood cells (RBCs). In this work, the research has been focused on the multi-step optimization of chemical synthesis of magnetic nanoparticles (MNPs), precisely iron oxide nanoparticles (IONPs) and zinc manganese-ferrite nanoparticles (Zn/Mn FNPs), for encapsulation in human and murine RBCs. The encapsulation through the transient opening of RBC membrane pores requires extensive efforts to deliver high-quality nanoparticles in terms of chemical properties, morphology, stability and biocompatibility. After reaching this goal, in vitro experiments were performed with selected nanomaterials to investigate the potential of engineered MNP-RBC constructs in theranostic approaches. The synthesis of magnetic nanoparticles (based on iron oxide or Zn/Mn ferrite) has been optimized, through the evaluation of different parameters, for encapsulation into human and murine red blood cells.</description><subject>Animals</subject><subject>Biocompatibility</subject><subject>Chemical properties</subject><subject>Chemical Sciences</subject><subject>Chemical synthesis</subject><subject>Drug Delivery Systems</subject><subject>Encapsulation</subject><subject>Erythrocytes</subject><subject>Erythrocytes - metabolism</subject><subject>Humans</subject><subject>Hyperthermia</subject><subject>Iron oxides</subject><subject>Magnetic properties</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Magnetite Nanoparticles - chemistry</subject><subject>Manganese</subject><subject>Mice</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Optimization</subject><subject>Precision Medicine</subject><subject>Theranostic Nanomedicine - methods</subject><issn>2047-4830</issn><issn>2047-4849</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkU1PGzEQhq2KqkQ0l96LVuJSKgX8sbu2jyG0BRGUSzlwsrzObOKwawfbqZT-epyGBom5zGjmmVczehH6QvAFwUxezlnTY0zr8ukDGlBc8lEpSnl0qBk-RsMYVzgH5xLX5BM6ZrVkknA6QI-zdbK9_auT9a7wbdHrhYNkTeG082sdctlBLFofCnAL6wCCdYsCwjYtgzfblIc6FmkJIS_E3aZegEvxM_rY6i7C8DWfoIefP35PbkbT2a_byXg6MiXmaURlQ03VECxaaXiJZcs4hWpe1abSnEoOQreNpFxXsqUgoGINmKbCdG4aqmt2gs73ukvdqXWwvQ5b5bVVN-Op2vVwSaUklfhDMvttz66Df95ATKq30UDXaQd-ExXlQnBZCykyevYOXflNcPkTRQUWRNSk3gl-31Mm-BgDtIcLCFY7f9Q1u7r_589dhk9fJTdND_MD-t-NDHzdAyGaw_TNYPYC2ueUoA</recordid><startdate>20230502</startdate><enddate>20230502</enddate><creator>Slavu, Laura Maria</creator><creator>Antonelli, Antonella</creator><creator>Scarpa, Emanuele Salvatore</creator><creator>Abdalla, Pasant</creator><creator>Wilhelm, Claire</creator><creator>Silvestri, Niccolò</creator><creator>Pellegrino, Teresa</creator><creator>Scheffler, Konrad</creator><creator>Magnani, Mauro</creator><creator>Rinaldi, Rosaria</creator><creator>Di Corato, Riccardo</creator><general>Royal Society of Chemistry</general><general>Royal Society of Chemistry (RSC)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-5931-4616</orcidid><orcidid>https://orcid.org/0000-0003-0202-8173</orcidid><orcidid>https://orcid.org/0000-0002-7173-6176</orcidid><orcidid>https://orcid.org/0000-0001-5518-1134</orcidid><orcidid>https://orcid.org/0000-0002-6842-9204</orcidid><orcidid>https://orcid.org/0000-0001-7024-9627</orcidid></search><sort><creationdate>20230502</creationdate><title>Optimization of magnetic nanoparticles for engineering erythrocytes as theranostic agents</title><author>Slavu, Laura Maria ; Antonelli, Antonella ; Scarpa, Emanuele Salvatore ; Abdalla, Pasant ; Wilhelm, Claire ; Silvestri, Niccolò ; Pellegrino, Teresa ; Scheffler, Konrad ; Magnani, Mauro ; Rinaldi, Rosaria ; Di Corato, Riccardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-29b2c5b108f9c7409f372e5d56c5a7297e8afb927a59f2e8e53becb502dcb2a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Animals</topic><topic>Biocompatibility</topic><topic>Chemical properties</topic><topic>Chemical Sciences</topic><topic>Chemical synthesis</topic><topic>Drug Delivery Systems</topic><topic>Encapsulation</topic><topic>Erythrocytes</topic><topic>Erythrocytes - metabolism</topic><topic>Humans</topic><topic>Hyperthermia</topic><topic>Iron oxides</topic><topic>Magnetic properties</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Magnetite Nanoparticles - chemistry</topic><topic>Manganese</topic><topic>Mice</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Optimization</topic><topic>Precision Medicine</topic><topic>Theranostic Nanomedicine - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Slavu, Laura Maria</creatorcontrib><creatorcontrib>Antonelli, Antonella</creatorcontrib><creatorcontrib>Scarpa, Emanuele Salvatore</creatorcontrib><creatorcontrib>Abdalla, Pasant</creatorcontrib><creatorcontrib>Wilhelm, Claire</creatorcontrib><creatorcontrib>Silvestri, Niccolò</creatorcontrib><creatorcontrib>Pellegrino, Teresa</creatorcontrib><creatorcontrib>Scheffler, Konrad</creatorcontrib><creatorcontrib>Magnani, Mauro</creatorcontrib><creatorcontrib>Rinaldi, Rosaria</creatorcontrib><creatorcontrib>Di Corato, Riccardo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Biomaterials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Slavu, Laura Maria</au><au>Antonelli, Antonella</au><au>Scarpa, Emanuele Salvatore</au><au>Abdalla, Pasant</au><au>Wilhelm, Claire</au><au>Silvestri, Niccolò</au><au>Pellegrino, Teresa</au><au>Scheffler, Konrad</au><au>Magnani, Mauro</au><au>Rinaldi, Rosaria</au><au>Di Corato, Riccardo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of magnetic nanoparticles for engineering erythrocytes as theranostic agents</atitle><jtitle>Biomaterials science</jtitle><addtitle>Biomater Sci</addtitle><date>2023-05-02</date><risdate>2023</risdate><volume>11</volume><issue>9</issue><spage>3252</spage><epage>3268</epage><pages>3252-3268</pages><issn>2047-4830</issn><eissn>2047-4849</eissn><abstract>The application of superparamagnetic iron oxide nanoparticles (SPIONs) in drug delivery, magnetic resonance imaging, cell tracking, and hyperthermia has been long exploited regarding their inducible magnetic properties. Nevertheless, SPIONs remain rapidly cleared from the circulation by the reticuloendothelial system (RES) or mononuclear phagocyte system, with uptake dependent on several factors such as the hydrodynamic diameter, electrical charge and surface coating. This rapid clearance of SPION-based theranostic agents from circulation is one of the main challenges hampering the medical applications that differ from RES targeting. This work proposes a strategy to render biocompatible SPIONs through their encapsulation in the red blood cells (RBCs). In this work, the research has been focused on the multi-step optimization of chemical synthesis of magnetic nanoparticles (MNPs), precisely iron oxide nanoparticles (IONPs) and zinc manganese-ferrite nanoparticles (Zn/Mn FNPs), for encapsulation in human and murine RBCs. The encapsulation through the transient opening of RBC membrane pores requires extensive efforts to deliver high-quality nanoparticles in terms of chemical properties, morphology, stability and biocompatibility. After reaching this goal, in vitro experiments were performed with selected nanomaterials to investigate the potential of engineered MNP-RBC constructs in theranostic approaches. The synthesis of magnetic nanoparticles (based on iron oxide or Zn/Mn ferrite) has been optimized, through the evaluation of different parameters, for encapsulation into human and murine red blood cells.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>36939172</pmid><doi>10.1039/d3bm00264k</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-5931-4616</orcidid><orcidid>https://orcid.org/0000-0003-0202-8173</orcidid><orcidid>https://orcid.org/0000-0002-7173-6176</orcidid><orcidid>https://orcid.org/0000-0001-5518-1134</orcidid><orcidid>https://orcid.org/0000-0002-6842-9204</orcidid><orcidid>https://orcid.org/0000-0001-7024-9627</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2047-4830
ispartof Biomaterials science, 2023-05, Vol.11 (9), p.3252-3268
issn 2047-4830
2047-4849
language eng
recordid cdi_hal_primary_oai_HAL_hal_04299158v1
source MEDLINE; Royal Society Of Chemistry Journals 2008-
subjects Animals
Biocompatibility
Chemical properties
Chemical Sciences
Chemical synthesis
Drug Delivery Systems
Encapsulation
Erythrocytes
Erythrocytes - metabolism
Humans
Hyperthermia
Iron oxides
Magnetic properties
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Magnetite Nanoparticles - chemistry
Manganese
Mice
Nanomaterials
Nanoparticles
Optimization
Precision Medicine
Theranostic Nanomedicine - methods
title Optimization of magnetic nanoparticles for engineering erythrocytes as theranostic agents
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T18%3A17%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20magnetic%20nanoparticles%20for%20engineering%20erythrocytes%20as%20theranostic%20agents&rft.jtitle=Biomaterials%20science&rft.au=Slavu,%20Laura%20Maria&rft.date=2023-05-02&rft.volume=11&rft.issue=9&rft.spage=3252&rft.epage=3268&rft.pages=3252-3268&rft.issn=2047-4830&rft.eissn=2047-4849&rft_id=info:doi/10.1039/d3bm00264k&rft_dat=%3Cproquest_hal_p%3E2788796898%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2808186161&rft_id=info:pmid/36939172&rfr_iscdi=true