Nested spheroidal figures of equilibrium − IV. On heterogeneous configurations
ABSTRACT The theory of nested figures of equilibrium, expanded in Papers I and II, is investigated in the limit where the number of layers of the rotating body is infinite, enabling to reach full heterogeneity. In the asymptotic process, the discrete set of equations becomes a differential equation ...
Gespeichert in:
Veröffentlicht in: | Monthly notices of the Royal Astronomical Society 2024-01, Vol.527 (1), p.863-875 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 875 |
---|---|
container_issue | 1 |
container_start_page | 863 |
container_title | Monthly notices of the Royal Astronomical Society |
container_volume | 527 |
creator | Staelen, C Huré, J-M |
description | ABSTRACT
The theory of nested figures of equilibrium, expanded in Papers I and II, is investigated in the limit where the number of layers of the rotating body is infinite, enabling to reach full heterogeneity. In the asymptotic process, the discrete set of equations becomes a differential equation for the rotation rate. In the special case of rigid rotation (from centre to surface), we are led to an integro-differential equation (IDE) linking the ellipticity of isopycnic surfaces to the equatorial mass-density profile. In contrast with most studies, these equations are not restricted to small flattenings, but are valid for fast rotators as well. We use numerical solutions obtained from the self-consistent-field method to validate this approach. At small ellipticities (slow rotation), we fully recover Clairaut’s equation. Comparisons with Chandrasekhar’s perturbative approach and with Roberts’ work based on virial equations are successful. We derive a criterion to characterize the transition from slow to fast rotators. The treatment of heterogeneous structures containing mass-density jumps is proposed through a modified IDE. |
doi_str_mv | 10.1093/mnras/stad3215 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04294938v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/mnras/stad3215</oup_id><sourcerecordid>3113496594</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-9b0ac99a06e175e237c48c1537c19a2681495f14c9850247db3ff3d69b0105023</originalsourceid><addsrcrecordid>eNqFkE1OwzAUhC0EEqWwZR2JFYu0fvFP4mWFgFaqqJCAreUmTusqjVM7QeIGrDkBZ-EonAS35WfJ6kmjb0bzBqFzwAPAggzXtVN-6FtVkATYAeoB4SxOBOeHqIcxYXGWAhyjE-9XGGNKEt5D93fat7qIfLPUzppCVVFpFp3T_uPdlpHedKYyc2e6dfT5-hZNngbRrI6Wug30Qtfadj7Kbb3zqNbY2p-io1JVXp993z56vLl-uBrH09nt5Go0jXOSsjYWc6xyIRTmGlKmE5LmNMuBhQtCJTwDKlgJNBcZwwlNizkpS1Lw4AMcFNJHl_vcpapk48xauRdplZHj0VRuNUwTQQXJniGwF3u2cXbThY_lynauDvUkASBUcCZooAZ7KnfWe6fL31jAcjux3E0sfyb-q2C75j_2CzK7f3Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3113496594</pqid></control><display><type>article</type><title>Nested spheroidal figures of equilibrium − IV. On heterogeneous configurations</title><source>DOAJ Directory of Open Access Journals</source><source>Oxford Journals Open Access Collection</source><creator>Staelen, C ; Huré, J-M</creator><creatorcontrib>Staelen, C ; Huré, J-M</creatorcontrib><description>ABSTRACT
The theory of nested figures of equilibrium, expanded in Papers I and II, is investigated in the limit where the number of layers of the rotating body is infinite, enabling to reach full heterogeneity. In the asymptotic process, the discrete set of equations becomes a differential equation for the rotation rate. In the special case of rigid rotation (from centre to surface), we are led to an integro-differential equation (IDE) linking the ellipticity of isopycnic surfaces to the equatorial mass-density profile. In contrast with most studies, these equations are not restricted to small flattenings, but are valid for fast rotators as well. We use numerical solutions obtained from the self-consistent-field method to validate this approach. At small ellipticities (slow rotation), we fully recover Clairaut’s equation. Comparisons with Chandrasekhar’s perturbative approach and with Roberts’ work based on virial equations are successful. We derive a criterion to characterize the transition from slow to fast rotators. The treatment of heterogeneous structures containing mass-density jumps is proposed through a modified IDE.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1093/mnras/stad3215</identifier><language>eng</language><publisher>London: Oxford University Press</publisher><subject>Astrophysics ; Asymptotic series ; Density ; Differential equations ; Ellipticity ; Heterogeneity ; Physics ; Rotating bodies</subject><ispartof>Monthly notices of the Royal Astronomical Society, 2024-01, Vol.527 (1), p.863-875</ispartof><rights>The Author(s) 2023. Published by Oxford University Press on behalf of Royal Astronomical Society. 2023</rights><rights>The Author(s) 2023. Published by Oxford University Press on behalf of Royal Astronomical Society.</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-9b0ac99a06e175e237c48c1537c19a2681495f14c9850247db3ff3d69b0105023</citedby><cites>FETCH-LOGICAL-c375t-9b0ac99a06e175e237c48c1537c19a2681495f14c9850247db3ff3d69b0105023</cites><orcidid>0000-0002-9967-2522 ; 0000-0002-0770-1905</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,864,885,1604,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04294938$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Staelen, C</creatorcontrib><creatorcontrib>Huré, J-M</creatorcontrib><title>Nested spheroidal figures of equilibrium − IV. On heterogeneous configurations</title><title>Monthly notices of the Royal Astronomical Society</title><description>ABSTRACT
The theory of nested figures of equilibrium, expanded in Papers I and II, is investigated in the limit where the number of layers of the rotating body is infinite, enabling to reach full heterogeneity. In the asymptotic process, the discrete set of equations becomes a differential equation for the rotation rate. In the special case of rigid rotation (from centre to surface), we are led to an integro-differential equation (IDE) linking the ellipticity of isopycnic surfaces to the equatorial mass-density profile. In contrast with most studies, these equations are not restricted to small flattenings, but are valid for fast rotators as well. We use numerical solutions obtained from the self-consistent-field method to validate this approach. At small ellipticities (slow rotation), we fully recover Clairaut’s equation. Comparisons with Chandrasekhar’s perturbative approach and with Roberts’ work based on virial equations are successful. We derive a criterion to characterize the transition from slow to fast rotators. The treatment of heterogeneous structures containing mass-density jumps is proposed through a modified IDE.</description><subject>Astrophysics</subject><subject>Asymptotic series</subject><subject>Density</subject><subject>Differential equations</subject><subject>Ellipticity</subject><subject>Heterogeneity</subject><subject>Physics</subject><subject>Rotating bodies</subject><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNqFkE1OwzAUhC0EEqWwZR2JFYu0fvFP4mWFgFaqqJCAreUmTusqjVM7QeIGrDkBZ-EonAS35WfJ6kmjb0bzBqFzwAPAggzXtVN-6FtVkATYAeoB4SxOBOeHqIcxYXGWAhyjE-9XGGNKEt5D93fat7qIfLPUzppCVVFpFp3T_uPdlpHedKYyc2e6dfT5-hZNngbRrI6Wug30Qtfadj7Kbb3zqNbY2p-io1JVXp993z56vLl-uBrH09nt5Go0jXOSsjYWc6xyIRTmGlKmE5LmNMuBhQtCJTwDKlgJNBcZwwlNizkpS1Lw4AMcFNJHl_vcpapk48xauRdplZHj0VRuNUwTQQXJniGwF3u2cXbThY_lynauDvUkASBUcCZooAZ7KnfWe6fL31jAcjux3E0sfyb-q2C75j_2CzK7f3Q</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Staelen, C</creator><creator>Huré, J-M</creator><general>Oxford University Press</general><general>Oxford University Press (OUP): Policy P - Oxford Open Option A</general><scope>TOX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-9967-2522</orcidid><orcidid>https://orcid.org/0000-0002-0770-1905</orcidid></search><sort><creationdate>20240101</creationdate><title>Nested spheroidal figures of equilibrium − IV. On heterogeneous configurations</title><author>Staelen, C ; Huré, J-M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-9b0ac99a06e175e237c48c1537c19a2681495f14c9850247db3ff3d69b0105023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Astrophysics</topic><topic>Asymptotic series</topic><topic>Density</topic><topic>Differential equations</topic><topic>Ellipticity</topic><topic>Heterogeneity</topic><topic>Physics</topic><topic>Rotating bodies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Staelen, C</creatorcontrib><creatorcontrib>Huré, J-M</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Staelen, C</au><au>Huré, J-M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nested spheroidal figures of equilibrium − IV. On heterogeneous configurations</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><date>2024-01-01</date><risdate>2024</risdate><volume>527</volume><issue>1</issue><spage>863</spage><epage>875</epage><pages>863-875</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract>ABSTRACT
The theory of nested figures of equilibrium, expanded in Papers I and II, is investigated in the limit where the number of layers of the rotating body is infinite, enabling to reach full heterogeneity. In the asymptotic process, the discrete set of equations becomes a differential equation for the rotation rate. In the special case of rigid rotation (from centre to surface), we are led to an integro-differential equation (IDE) linking the ellipticity of isopycnic surfaces to the equatorial mass-density profile. In contrast with most studies, these equations are not restricted to small flattenings, but are valid for fast rotators as well. We use numerical solutions obtained from the self-consistent-field method to validate this approach. At small ellipticities (slow rotation), we fully recover Clairaut’s equation. Comparisons with Chandrasekhar’s perturbative approach and with Roberts’ work based on virial equations are successful. We derive a criterion to characterize the transition from slow to fast rotators. The treatment of heterogeneous structures containing mass-density jumps is proposed through a modified IDE.</abstract><cop>London</cop><pub>Oxford University Press</pub><doi>10.1093/mnras/stad3215</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9967-2522</orcidid><orcidid>https://orcid.org/0000-0002-0770-1905</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0035-8711 |
ispartof | Monthly notices of the Royal Astronomical Society, 2024-01, Vol.527 (1), p.863-875 |
issn | 0035-8711 1365-2966 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04294938v1 |
source | DOAJ Directory of Open Access Journals; Oxford Journals Open Access Collection |
subjects | Astrophysics Asymptotic series Density Differential equations Ellipticity Heterogeneity Physics Rotating bodies |
title | Nested spheroidal figures of equilibrium − IV. On heterogeneous configurations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A35%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nested%20spheroidal%20figures%C2%A0of%20equilibrium%20%E2%88%92%20IV.%20On%20heterogeneous%20configurations&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Staelen,%20C&rft.date=2024-01-01&rft.volume=527&rft.issue=1&rft.spage=863&rft.epage=875&rft.pages=863-875&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1093/mnras/stad3215&rft_dat=%3Cproquest_hal_p%3E3113496594%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3113496594&rft_id=info:pmid/&rft_oup_id=10.1093/mnras/stad3215&rfr_iscdi=true |