Nested spheroidal figures of equilibrium − IV. On heterogeneous configurations

ABSTRACT The theory of nested figures of equilibrium, expanded in Papers I and II, is investigated in the limit where the number of layers of the rotating body is infinite, enabling to reach full heterogeneity. In the asymptotic process, the discrete set of equations becomes a differential equation ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2024-01, Vol.527 (1), p.863-875
Hauptverfasser: Staelen, C, Huré, J-M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 875
container_issue 1
container_start_page 863
container_title Monthly notices of the Royal Astronomical Society
container_volume 527
creator Staelen, C
Huré, J-M
description ABSTRACT The theory of nested figures of equilibrium, expanded in Papers I and II, is investigated in the limit where the number of layers of the rotating body is infinite, enabling to reach full heterogeneity. In the asymptotic process, the discrete set of equations becomes a differential equation for the rotation rate. In the special case of rigid rotation (from centre to surface), we are led to an integro-differential equation (IDE) linking the ellipticity of isopycnic surfaces to the equatorial mass-density profile. In contrast with most studies, these equations are not restricted to small flattenings, but are valid for fast rotators as well. We use numerical solutions obtained from the self-consistent-field method to validate this approach. At small ellipticities (slow rotation), we fully recover Clairaut’s equation. Comparisons with Chandrasekhar’s perturbative approach and with Roberts’ work based on virial equations are successful. We derive a criterion to characterize the transition from slow to fast rotators. The treatment of heterogeneous structures containing mass-density jumps is proposed through a modified IDE.
doi_str_mv 10.1093/mnras/stad3215
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04294938v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/mnras/stad3215</oup_id><sourcerecordid>3113496594</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-9b0ac99a06e175e237c48c1537c19a2681495f14c9850247db3ff3d69b0105023</originalsourceid><addsrcrecordid>eNqFkE1OwzAUhC0EEqWwZR2JFYu0fvFP4mWFgFaqqJCAreUmTusqjVM7QeIGrDkBZ-EonAS35WfJ6kmjb0bzBqFzwAPAggzXtVN-6FtVkATYAeoB4SxOBOeHqIcxYXGWAhyjE-9XGGNKEt5D93fat7qIfLPUzppCVVFpFp3T_uPdlpHedKYyc2e6dfT5-hZNngbRrI6Wug30Qtfadj7Kbb3zqNbY2p-io1JVXp993z56vLl-uBrH09nt5Go0jXOSsjYWc6xyIRTmGlKmE5LmNMuBhQtCJTwDKlgJNBcZwwlNizkpS1Lw4AMcFNJHl_vcpapk48xauRdplZHj0VRuNUwTQQXJniGwF3u2cXbThY_lynauDvUkASBUcCZooAZ7KnfWe6fL31jAcjux3E0sfyb-q2C75j_2CzK7f3Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3113496594</pqid></control><display><type>article</type><title>Nested spheroidal figures of equilibrium − IV. On heterogeneous configurations</title><source>DOAJ Directory of Open Access Journals</source><source>Oxford Journals Open Access Collection</source><creator>Staelen, C ; Huré, J-M</creator><creatorcontrib>Staelen, C ; Huré, J-M</creatorcontrib><description>ABSTRACT The theory of nested figures of equilibrium, expanded in Papers I and II, is investigated in the limit where the number of layers of the rotating body is infinite, enabling to reach full heterogeneity. In the asymptotic process, the discrete set of equations becomes a differential equation for the rotation rate. In the special case of rigid rotation (from centre to surface), we are led to an integro-differential equation (IDE) linking the ellipticity of isopycnic surfaces to the equatorial mass-density profile. In contrast with most studies, these equations are not restricted to small flattenings, but are valid for fast rotators as well. We use numerical solutions obtained from the self-consistent-field method to validate this approach. At small ellipticities (slow rotation), we fully recover Clairaut’s equation. Comparisons with Chandrasekhar’s perturbative approach and with Roberts’ work based on virial equations are successful. We derive a criterion to characterize the transition from slow to fast rotators. The treatment of heterogeneous structures containing mass-density jumps is proposed through a modified IDE.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1093/mnras/stad3215</identifier><language>eng</language><publisher>London: Oxford University Press</publisher><subject>Astrophysics ; Asymptotic series ; Density ; Differential equations ; Ellipticity ; Heterogeneity ; Physics ; Rotating bodies</subject><ispartof>Monthly notices of the Royal Astronomical Society, 2024-01, Vol.527 (1), p.863-875</ispartof><rights>The Author(s) 2023. Published by Oxford University Press on behalf of Royal Astronomical Society. 2023</rights><rights>The Author(s) 2023. Published by Oxford University Press on behalf of Royal Astronomical Society.</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-9b0ac99a06e175e237c48c1537c19a2681495f14c9850247db3ff3d69b0105023</citedby><cites>FETCH-LOGICAL-c375t-9b0ac99a06e175e237c48c1537c19a2681495f14c9850247db3ff3d69b0105023</cites><orcidid>0000-0002-9967-2522 ; 0000-0002-0770-1905</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,864,885,1604,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04294938$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Staelen, C</creatorcontrib><creatorcontrib>Huré, J-M</creatorcontrib><title>Nested spheroidal figures of equilibrium − IV. On heterogeneous configurations</title><title>Monthly notices of the Royal Astronomical Society</title><description>ABSTRACT The theory of nested figures of equilibrium, expanded in Papers I and II, is investigated in the limit where the number of layers of the rotating body is infinite, enabling to reach full heterogeneity. In the asymptotic process, the discrete set of equations becomes a differential equation for the rotation rate. In the special case of rigid rotation (from centre to surface), we are led to an integro-differential equation (IDE) linking the ellipticity of isopycnic surfaces to the equatorial mass-density profile. In contrast with most studies, these equations are not restricted to small flattenings, but are valid for fast rotators as well. We use numerical solutions obtained from the self-consistent-field method to validate this approach. At small ellipticities (slow rotation), we fully recover Clairaut’s equation. Comparisons with Chandrasekhar’s perturbative approach and with Roberts’ work based on virial equations are successful. We derive a criterion to characterize the transition from slow to fast rotators. The treatment of heterogeneous structures containing mass-density jumps is proposed through a modified IDE.</description><subject>Astrophysics</subject><subject>Asymptotic series</subject><subject>Density</subject><subject>Differential equations</subject><subject>Ellipticity</subject><subject>Heterogeneity</subject><subject>Physics</subject><subject>Rotating bodies</subject><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNqFkE1OwzAUhC0EEqWwZR2JFYu0fvFP4mWFgFaqqJCAreUmTusqjVM7QeIGrDkBZ-EonAS35WfJ6kmjb0bzBqFzwAPAggzXtVN-6FtVkATYAeoB4SxOBOeHqIcxYXGWAhyjE-9XGGNKEt5D93fat7qIfLPUzppCVVFpFp3T_uPdlpHedKYyc2e6dfT5-hZNngbRrI6Wug30Qtfadj7Kbb3zqNbY2p-io1JVXp993z56vLl-uBrH09nt5Go0jXOSsjYWc6xyIRTmGlKmE5LmNMuBhQtCJTwDKlgJNBcZwwlNizkpS1Lw4AMcFNJHl_vcpapk48xauRdplZHj0VRuNUwTQQXJniGwF3u2cXbThY_lynauDvUkASBUcCZooAZ7KnfWe6fL31jAcjux3E0sfyb-q2C75j_2CzK7f3Q</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Staelen, C</creator><creator>Huré, J-M</creator><general>Oxford University Press</general><general>Oxford University Press (OUP): Policy P - Oxford Open Option A</general><scope>TOX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-9967-2522</orcidid><orcidid>https://orcid.org/0000-0002-0770-1905</orcidid></search><sort><creationdate>20240101</creationdate><title>Nested spheroidal figures of equilibrium − IV. On heterogeneous configurations</title><author>Staelen, C ; Huré, J-M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-9b0ac99a06e175e237c48c1537c19a2681495f14c9850247db3ff3d69b0105023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Astrophysics</topic><topic>Asymptotic series</topic><topic>Density</topic><topic>Differential equations</topic><topic>Ellipticity</topic><topic>Heterogeneity</topic><topic>Physics</topic><topic>Rotating bodies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Staelen, C</creatorcontrib><creatorcontrib>Huré, J-M</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Staelen, C</au><au>Huré, J-M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nested spheroidal figures of equilibrium − IV. On heterogeneous configurations</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><date>2024-01-01</date><risdate>2024</risdate><volume>527</volume><issue>1</issue><spage>863</spage><epage>875</epage><pages>863-875</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract>ABSTRACT The theory of nested figures of equilibrium, expanded in Papers I and II, is investigated in the limit where the number of layers of the rotating body is infinite, enabling to reach full heterogeneity. In the asymptotic process, the discrete set of equations becomes a differential equation for the rotation rate. In the special case of rigid rotation (from centre to surface), we are led to an integro-differential equation (IDE) linking the ellipticity of isopycnic surfaces to the equatorial mass-density profile. In contrast with most studies, these equations are not restricted to small flattenings, but are valid for fast rotators as well. We use numerical solutions obtained from the self-consistent-field method to validate this approach. At small ellipticities (slow rotation), we fully recover Clairaut’s equation. Comparisons with Chandrasekhar’s perturbative approach and with Roberts’ work based on virial equations are successful. We derive a criterion to characterize the transition from slow to fast rotators. The treatment of heterogeneous structures containing mass-density jumps is proposed through a modified IDE.</abstract><cop>London</cop><pub>Oxford University Press</pub><doi>10.1093/mnras/stad3215</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9967-2522</orcidid><orcidid>https://orcid.org/0000-0002-0770-1905</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0035-8711
ispartof Monthly notices of the Royal Astronomical Society, 2024-01, Vol.527 (1), p.863-875
issn 0035-8711
1365-2966
language eng
recordid cdi_hal_primary_oai_HAL_hal_04294938v1
source DOAJ Directory of Open Access Journals; Oxford Journals Open Access Collection
subjects Astrophysics
Asymptotic series
Density
Differential equations
Ellipticity
Heterogeneity
Physics
Rotating bodies
title Nested spheroidal figures of equilibrium − IV. On heterogeneous configurations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A35%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nested%20spheroidal%20figures%C2%A0of%20equilibrium%20%E2%88%92%20IV.%20On%20heterogeneous%20configurations&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Staelen,%20C&rft.date=2024-01-01&rft.volume=527&rft.issue=1&rft.spage=863&rft.epage=875&rft.pages=863-875&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1093/mnras/stad3215&rft_dat=%3Cproquest_hal_p%3E3113496594%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3113496594&rft_id=info:pmid/&rft_oup_id=10.1093/mnras/stad3215&rfr_iscdi=true