Single-Photon Level Dispersive Fourier Transform: Ultrasensitive Characterization of Noise-Driven Nonlinear Dynamics
Dispersive Fourier transform is a characterization technique that allows directly extracting an optical spectrum from a time domain signal, thus providing access to real-time characterization of the signal spectrum. However, these techniques suffer from sensitivity and dynamic range limitations, ham...
Gespeichert in:
Veröffentlicht in: | ACS photonics 2023-11, Vol.10 (11), p.3915-3928 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Dispersive Fourier transform is a characterization technique that allows directly extracting an optical spectrum from a time domain signal, thus providing access to real-time characterization of the signal spectrum. However, these techniques suffer from sensitivity and dynamic range limitations, hampering their use for special applications in, e.g., high-contrast characterizations and sensing. Here, we report on a novel approach to dispersive Fourier transform-based characterization using single-photon detectors. In particular, we experimentally develop this approach by leveraging mutual information analysis for signal processing and hold a performance comparison with standard dispersive Fourier transform detection and statistical tools. We apply the comparison to the analysis of noise-driven nonlinear dynamics arising from well-known modulation instability processes. We demonstrate that with this dispersive Fourier transform approach, mutual information metrics allow for successfully gaining insight into the fluctuations associated with modulation instability-induced spectral broadening, providing qualitatively similar signatures compared to ultrafast photodetector-based dispersive Fourier transform but with improved signal quality and spectral resolution (down to 53 pm). The technique presents an intrinsically unlimited dynamic range and is extremely sensitive, with a sensitivity reaching below the femtowatt (typically 4 orders of magnitude better than ultrafast dispersive Fourier transform detection). We show that this method can not only be implemented to gain insight into noise-driven (spontaneous) frequency conversion processes but also be leveraged to characterize incoherent dynamics seeded by weak coherent optical fields. |
---|---|
ISSN: | 2330-4022 2330-4022 |
DOI: | 10.1021/acsphotonics.3c00711 |