The production of uncertainty in three-dimensional Navier–Stokes turbulence
We derive the evolution equation of the average uncertainty energy for periodic/homogeneous incompressible Navier–Stokes turbulence and show that uncertainty is increased by strain rate compression and decreased by strain rate stretching. We use three different direct numerical simulations (DNS) of...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2023-12, Vol.977 (A17), Article A17 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | A17 |
container_start_page | |
container_title | Journal of fluid mechanics |
container_volume | 977 |
creator | Ge, Jin Rolland, Joran Vassilicos, John Christos |
description | We derive the evolution equation of the average uncertainty energy for periodic/homogeneous incompressible Navier–Stokes turbulence and show that uncertainty is increased by strain rate compression and decreased by strain rate stretching. We use three different direct numerical simulations (DNS) of non-decaying periodic turbulence and identify a similarity regime where (a) the production and dissipation rates of uncertainty grow together in time, (b) the parts of the uncertainty production rate accountable to average strain rate properties on the one hand and fluctuating strain rate properties on the other also grow together in time, (c) the average uncertainty energies along the three different strain rate principal axes remain constant as a ratio of the total average uncertainty energy, (d) the uncertainty energy spectrum's evolution is self-similar if normalised by the uncertainty's average uncertainty energy and characteristic length and (e) the uncertainty production rate is extremely intermittent and skewed towards extreme compression events even though the most likely uncertainty production rate is zero. Properties (a), (b) and (c) imply that the average uncertainty energy grows exponentially in this similarity time range. The Lyapunov exponent depends on both the Kolmogorov time scale and the smallest Eulerian time scale, indicating a dependence on random large-scale sweeping of dissipative eddies. In the two DNS cases of statistically stationary turbulence, this exponential growth is followed by an exponential of exponential growth, which is, in turn, followed by a linear growth in the one DNS case where the Navier–Stokes forcing also produces uncertainty. |
doi_str_mv | 10.1017/jfm.2023.967 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04288900v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2023_967</cupid><sourcerecordid>2900790714</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-5180b8896ef85fb27d01d3d9d06b123fb206a41b7e0738c1a4d05e575034e2533</originalsourceid><addsrcrecordid>eNptkM1Kw0AUhQdRsFZ3PkDAlWDinZkkkyxLUStUXVjXwyRzY6fmp84khe58B9_QJ3FKRTeuLhy-88E9hJxTiChQcb2qmogB41GeigMyonGahyKNk0MyAmAspJTBMTlxbgVAOeRiRB4WSwzWttND2ZuuDboqGNoSba9M228D0wb90iKG2jTYOk-oOnhUG4P26-Pzue_e0AX9YIuhRl87JUeVqh2e_dwxebm9WUxn4fzp7n46mYcl52kfJjSDIsvyFKssqQomNFDNda4hLSjjPoFUxbQQCIJnJVWxhgQTkQCPkSWcj8nl3rtUtVxb0yi7lZ0ycjaZy10GMfN-gA317MWe9V--D-h6ueoG6_9wknlC5CBo7KmrPVXazjmL1a-WgtyNK_24cjeu9ON6PPrBVVNYo1_xz_pv4RsHbHuy</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2900790714</pqid></control><display><type>article</type><title>The production of uncertainty in three-dimensional Navier–Stokes turbulence</title><source>Cambridge Journals Online</source><creator>Ge, Jin ; Rolland, Joran ; Vassilicos, John Christos</creator><creatorcontrib>Ge, Jin ; Rolland, Joran ; Vassilicos, John Christos</creatorcontrib><description>We derive the evolution equation of the average uncertainty energy for periodic/homogeneous incompressible Navier–Stokes turbulence and show that uncertainty is increased by strain rate compression and decreased by strain rate stretching. We use three different direct numerical simulations (DNS) of non-decaying periodic turbulence and identify a similarity regime where (a) the production and dissipation rates of uncertainty grow together in time, (b) the parts of the uncertainty production rate accountable to average strain rate properties on the one hand and fluctuating strain rate properties on the other also grow together in time, (c) the average uncertainty energies along the three different strain rate principal axes remain constant as a ratio of the total average uncertainty energy, (d) the uncertainty energy spectrum's evolution is self-similar if normalised by the uncertainty's average uncertainty energy and characteristic length and (e) the uncertainty production rate is extremely intermittent and skewed towards extreme compression events even though the most likely uncertainty production rate is zero. Properties (a), (b) and (c) imply that the average uncertainty energy grows exponentially in this similarity time range. The Lyapunov exponent depends on both the Kolmogorov time scale and the smallest Eulerian time scale, indicating a dependence on random large-scale sweeping of dissipative eddies. In the two DNS cases of statistically stationary turbulence, this exponential growth is followed by an exponential of exponential growth, which is, in turn, followed by a linear growth in the one DNS case where the Navier–Stokes forcing also produces uncertainty.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2023.967</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Compression ; Direct numerical simulation ; Dissipation ; Eddies ; Energy ; Energy spectra ; Evolution ; Fluid flow ; Growth ; JFM Papers ; Liapunov exponents ; Navier-Stokes equations ; Nonlinear Sciences ; Reynolds number ; Self-similarity ; Similarity ; Strain rate ; Time ; Turbulence ; Turbulent flow ; Uncertainty ; Velocity ; Vortices</subject><ispartof>Journal of fluid mechanics, 2023-12, Vol.977 (A17), Article A17</ispartof><rights>The Author(s), 2023. Published by Cambridge University Press</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-5180b8896ef85fb27d01d3d9d06b123fb206a41b7e0738c1a4d05e575034e2533</citedby><cites>FETCH-LOGICAL-c336t-5180b8896ef85fb27d01d3d9d06b123fb206a41b7e0738c1a4d05e575034e2533</cites><orcidid>0000-0002-6089-4750 ; 0000-0001-7339-3608 ; 0000-0003-1828-6628</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112023009679/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,230,314,776,780,881,27903,27904,55607</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04288900$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ge, Jin</creatorcontrib><creatorcontrib>Rolland, Joran</creatorcontrib><creatorcontrib>Vassilicos, John Christos</creatorcontrib><title>The production of uncertainty in three-dimensional Navier–Stokes turbulence</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>We derive the evolution equation of the average uncertainty energy for periodic/homogeneous incompressible Navier–Stokes turbulence and show that uncertainty is increased by strain rate compression and decreased by strain rate stretching. We use three different direct numerical simulations (DNS) of non-decaying periodic turbulence and identify a similarity regime where (a) the production and dissipation rates of uncertainty grow together in time, (b) the parts of the uncertainty production rate accountable to average strain rate properties on the one hand and fluctuating strain rate properties on the other also grow together in time, (c) the average uncertainty energies along the three different strain rate principal axes remain constant as a ratio of the total average uncertainty energy, (d) the uncertainty energy spectrum's evolution is self-similar if normalised by the uncertainty's average uncertainty energy and characteristic length and (e) the uncertainty production rate is extremely intermittent and skewed towards extreme compression events even though the most likely uncertainty production rate is zero. Properties (a), (b) and (c) imply that the average uncertainty energy grows exponentially in this similarity time range. The Lyapunov exponent depends on both the Kolmogorov time scale and the smallest Eulerian time scale, indicating a dependence on random large-scale sweeping of dissipative eddies. In the two DNS cases of statistically stationary turbulence, this exponential growth is followed by an exponential of exponential growth, which is, in turn, followed by a linear growth in the one DNS case where the Navier–Stokes forcing also produces uncertainty.</description><subject>Compression</subject><subject>Direct numerical simulation</subject><subject>Dissipation</subject><subject>Eddies</subject><subject>Energy</subject><subject>Energy spectra</subject><subject>Evolution</subject><subject>Fluid flow</subject><subject>Growth</subject><subject>JFM Papers</subject><subject>Liapunov exponents</subject><subject>Navier-Stokes equations</subject><subject>Nonlinear Sciences</subject><subject>Reynolds number</subject><subject>Self-similarity</subject><subject>Similarity</subject><subject>Strain rate</subject><subject>Time</subject><subject>Turbulence</subject><subject>Turbulent flow</subject><subject>Uncertainty</subject><subject>Velocity</subject><subject>Vortices</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkM1Kw0AUhQdRsFZ3PkDAlWDinZkkkyxLUStUXVjXwyRzY6fmp84khe58B9_QJ3FKRTeuLhy-88E9hJxTiChQcb2qmogB41GeigMyonGahyKNk0MyAmAspJTBMTlxbgVAOeRiRB4WSwzWttND2ZuuDboqGNoSba9M228D0wb90iKG2jTYOk-oOnhUG4P26-Pzue_e0AX9YIuhRl87JUeVqh2e_dwxebm9WUxn4fzp7n46mYcl52kfJjSDIsvyFKssqQomNFDNda4hLSjjPoFUxbQQCIJnJVWxhgQTkQCPkSWcj8nl3rtUtVxb0yi7lZ0ycjaZy10GMfN-gA317MWe9V--D-h6ueoG6_9wknlC5CBo7KmrPVXazjmL1a-WgtyNK_24cjeu9ON6PPrBVVNYo1_xz_pv4RsHbHuy</recordid><startdate>20231225</startdate><enddate>20231225</enddate><creator>Ge, Jin</creator><creator>Rolland, Joran</creator><creator>Vassilicos, John Christos</creator><general>Cambridge University Press</general><general>Cambridge University Press (CUP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-6089-4750</orcidid><orcidid>https://orcid.org/0000-0001-7339-3608</orcidid><orcidid>https://orcid.org/0000-0003-1828-6628</orcidid></search><sort><creationdate>20231225</creationdate><title>The production of uncertainty in three-dimensional Navier–Stokes turbulence</title><author>Ge, Jin ; Rolland, Joran ; Vassilicos, John Christos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-5180b8896ef85fb27d01d3d9d06b123fb206a41b7e0738c1a4d05e575034e2533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Compression</topic><topic>Direct numerical simulation</topic><topic>Dissipation</topic><topic>Eddies</topic><topic>Energy</topic><topic>Energy spectra</topic><topic>Evolution</topic><topic>Fluid flow</topic><topic>Growth</topic><topic>JFM Papers</topic><topic>Liapunov exponents</topic><topic>Navier-Stokes equations</topic><topic>Nonlinear Sciences</topic><topic>Reynolds number</topic><topic>Self-similarity</topic><topic>Similarity</topic><topic>Strain rate</topic><topic>Time</topic><topic>Turbulence</topic><topic>Turbulent flow</topic><topic>Uncertainty</topic><topic>Velocity</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ge, Jin</creatorcontrib><creatorcontrib>Rolland, Joran</creatorcontrib><creatorcontrib>Vassilicos, John Christos</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ge, Jin</au><au>Rolland, Joran</au><au>Vassilicos, John Christos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The production of uncertainty in three-dimensional Navier–Stokes turbulence</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2023-12-25</date><risdate>2023</risdate><volume>977</volume><issue>A17</issue><artnum>A17</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>We derive the evolution equation of the average uncertainty energy for periodic/homogeneous incompressible Navier–Stokes turbulence and show that uncertainty is increased by strain rate compression and decreased by strain rate stretching. We use three different direct numerical simulations (DNS) of non-decaying periodic turbulence and identify a similarity regime where (a) the production and dissipation rates of uncertainty grow together in time, (b) the parts of the uncertainty production rate accountable to average strain rate properties on the one hand and fluctuating strain rate properties on the other also grow together in time, (c) the average uncertainty energies along the three different strain rate principal axes remain constant as a ratio of the total average uncertainty energy, (d) the uncertainty energy spectrum's evolution is self-similar if normalised by the uncertainty's average uncertainty energy and characteristic length and (e) the uncertainty production rate is extremely intermittent and skewed towards extreme compression events even though the most likely uncertainty production rate is zero. Properties (a), (b) and (c) imply that the average uncertainty energy grows exponentially in this similarity time range. The Lyapunov exponent depends on both the Kolmogorov time scale and the smallest Eulerian time scale, indicating a dependence on random large-scale sweeping of dissipative eddies. In the two DNS cases of statistically stationary turbulence, this exponential growth is followed by an exponential of exponential growth, which is, in turn, followed by a linear growth in the one DNS case where the Navier–Stokes forcing also produces uncertainty.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2023.967</doi><tpages>33</tpages><orcidid>https://orcid.org/0000-0002-6089-4750</orcidid><orcidid>https://orcid.org/0000-0001-7339-3608</orcidid><orcidid>https://orcid.org/0000-0003-1828-6628</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2023-12, Vol.977 (A17), Article A17 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04288900v1 |
source | Cambridge Journals Online |
subjects | Compression Direct numerical simulation Dissipation Eddies Energy Energy spectra Evolution Fluid flow Growth JFM Papers Liapunov exponents Navier-Stokes equations Nonlinear Sciences Reynolds number Self-similarity Similarity Strain rate Time Turbulence Turbulent flow Uncertainty Velocity Vortices |
title | The production of uncertainty in three-dimensional Navier–Stokes turbulence |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T18%3A44%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20production%20of%20uncertainty%20in%20three-dimensional%20Navier%E2%80%93Stokes%20turbulence&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Ge,%20Jin&rft.date=2023-12-25&rft.volume=977&rft.issue=A17&rft.artnum=A17&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2023.967&rft_dat=%3Cproquest_hal_p%3E2900790714%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2900790714&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2023_967&rfr_iscdi=true |